wlplan.feature_generator
- class Features
- collect(*args, **kwargs)
- Overloaded function. - collect(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) -> None 
- collect(self: _wlplan.feature_generator.Features, graphs: list[_wlplan.graph_generator.Graph]) -> None 
 
 - embed(*args, **kwargs)
- Overloaded function. - embed(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) -> list[list[float]] 
- embed(self: _wlplan.feature_generator.Features, graphs: list[_wlplan.graph_generator.Graph]) -> list[list[float]] 
- embed(self: _wlplan.feature_generator.Features, graph: _wlplan.graph_generator.Graph) -> list[float] 
- embed(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> list[float] 
 
 - get_colour_to_layer(self: _wlplan.feature_generator.Features) dict[int, int]
 - get_feature_name(self: _wlplan.feature_generator.Features) str
 - get_graph_representation(self: _wlplan.feature_generator.Features) str
 - get_iterations(self: _wlplan.feature_generator.Features) int
 - get_layer_to_colours(self: _wlplan.feature_generator.Features) list[set[int]]
 - get_layer_to_n_colours(self: _wlplan.feature_generator.Features) list[int]
 - get_n_colours(self: _wlplan.feature_generator.Features) int
 - get_n_features(self: _wlplan.feature_generator.Features) int
 - get_pruning(self: _wlplan.feature_generator.Features) str
 - get_seen_counts(self: _wlplan.feature_generator.Features) list[int]
 - get_string_representation(*args, **kwargs)
- Overloaded function. - get_string_representation(self: _wlplan.feature_generator.Features, embedding: list[float]) -> str 
- get_string_representation(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> str 
 
 - get_unseen_counts(self: _wlplan.feature_generator.Features) list[int]
 - get_weights(self: _wlplan.feature_generator.Features) list[float]
 - predict(*args, **kwargs)
- Overloaded function. - predict(self: _wlplan.feature_generator.Features, graph: _wlplan.graph_generator.Graph) -> float 
- predict(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> float 
 
 - print_init_colours(self: _wlplan.feature_generator.Features) None
 - save(*args, **kwargs)
- Overloaded function. - save(self: _wlplan.feature_generator.Features, filename: str) -> None 
- save(self: _wlplan.feature_generator.Features, filename: str, weights: list[float]) -> None 
 
 - set_problem(self: _wlplan.feature_generator.Features, problem: _wlplan.planning.Problem) None
 - set_pruning(self: _wlplan.feature_generator.Features, pruning: str) None
 - set_weights(self: _wlplan.feature_generator.Features, weights: list[float]) None
 - to_graphs(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) list[_wlplan.graph_generator.Graph]
 
- get_available_feature_generators() list[str]
- get_available_graph_generators() list[str]
- get_available_pruning_methods() list[str]
- init_feature_generator(feature_algorithm: str, domain: Domain, graph_representation: str = 'ilg', iterations: int = 2, pruning: str = 'none', multiset_hash: bool = False) Features
- Returns a feature generator based on the specified feature algorithm. - Parameters:
- feature_algorithm (str) – The WL feature algorithm to use. 
- domain (Domain) – The input domain. 
- graph_representation (str, default="ilg") – The graph encoding of planning states used. If “custom”, the user can only call class method of classes and not datasets and states. 
- iterations (int, default=2) – The number of WL iterations to perform. 
- pruning (str, default="none") – How to detect and prune duplicate features. If “none”, no pruning is done. 
- multiset_hash (bool, default=False) – Choose to use either set or multiset to store neighbour colours. 
 
- Returns:
- FeatureGenerator 
- Return type:
- The instantiated feature generator. 
- Raises:
- ValueError – If a specified argument is unknown.: