wlplan.feature_generator
- class Features
- collect(*args, **kwargs)
Overloaded function.
collect(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) -> None
collect(self: _wlplan.feature_generator.Features, graphs: list[_wlplan.graph_generator.Graph]) -> None
- embed(*args, **kwargs)
Overloaded function.
embed(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) -> list[list[float]]
embed(self: _wlplan.feature_generator.Features, graphs: list[_wlplan.graph_generator.Graph]) -> list[list[float]]
embed(self: _wlplan.feature_generator.Features, graph: _wlplan.graph_generator.Graph) -> list[float]
embed(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> list[float]
- get_colour_to_layer(self: _wlplan.feature_generator.Features) dict[int, int]
- get_feature_name(self: _wlplan.feature_generator.Features) str
- get_graph_representation(self: _wlplan.feature_generator.Features) str
- get_iterations(self: _wlplan.feature_generator.Features) int
- get_layer_to_colours(self: _wlplan.feature_generator.Features) list[set[int]]
- get_layer_to_n_colours(self: _wlplan.feature_generator.Features) list[int]
- get_n_colours(self: _wlplan.feature_generator.Features) int
- get_n_features(self: _wlplan.feature_generator.Features) int
- get_pruning(self: _wlplan.feature_generator.Features) str
- get_seen_counts(self: _wlplan.feature_generator.Features) list[int]
- get_string_representation(*args, **kwargs)
Overloaded function.
get_string_representation(self: _wlplan.feature_generator.Features, embedding: list[float]) -> str
get_string_representation(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> str
- get_unseen_counts(self: _wlplan.feature_generator.Features) list[int]
- get_weights(self: _wlplan.feature_generator.Features) list[float]
- predict(*args, **kwargs)
Overloaded function.
predict(self: _wlplan.feature_generator.Features, graph: _wlplan.graph_generator.Graph) -> float
predict(self: _wlplan.feature_generator.Features, state: _wlplan.planning.State) -> float
- print_init_colours(self: _wlplan.feature_generator.Features) None
- save(*args, **kwargs)
Overloaded function.
save(self: _wlplan.feature_generator.Features, filename: str) -> None
save(self: _wlplan.feature_generator.Features, filename: str, weights: list[float]) -> None
- set_problem(self: _wlplan.feature_generator.Features, problem: _wlplan.planning.Problem) None
- set_pruning(self: _wlplan.feature_generator.Features, pruning: str) None
- set_weights(self: _wlplan.feature_generator.Features, weights: list[float]) None
- to_graphs(self: _wlplan.feature_generator.Features, dataset: _wlplan.data.DomainDataset) list[_wlplan.graph_generator.Graph]
- get_available_feature_generators() list[str]
- get_available_graph_generators() list[str]
- get_available_pruning_methods() list[str]
- init_feature_generator(feature_algorithm: str, domain: Domain, graph_representation: str = 'ilg', iterations: int = 2, pruning: str = 'none', multiset_hash: bool = False) Features
Returns a feature generator based on the specified feature algorithm.
- Parameters:
feature_algorithm (str) – The WL feature algorithm to use.
domain (Domain) – The input domain.
graph_representation (str, default="ilg") – The graph encoding of planning states used. If “custom”, the user can only call class method of classes and not datasets and states.
iterations (int, default=2) – The number of WL iterations to perform.
pruning (str, default="none") – How to detect and prune duplicate features. If “none”, no pruning is done.
multiset_hash (bool, default=False) – Choose to use either set or multiset to store neighbour colours.
- Returns:
FeatureGenerator
- Return type:
The instantiated feature generator.
- Raises:
ValueError – If a specified argument is unknown.: