
STRIPS2DyPDL: A Translator from Automated
Planning Problems into Domain-Independent
Dynamic Programming Problems
Dillon Z. Chen #�

LAAS-CNRS, University of Toulouse, France

Abstract
Domain-Independent Dynamic Programming (DIDP) is a recently introduced model-based paradigm
for solving combinatorial optimisation problems and is inspired by automated planning models.
Automated planning refers to the problem of and methodologies associated with sequential decision
making under formally specified models. The most commonly used and simplest model for specifying
automated planning models is STRIPS. In this paper, we implement the tool STRIPS2DyPDL, a
translation of STRIPS planning problems into Dynamic Programming Description Language (DyPDL)
problems, the de facto formalism for defining DIDP models. Our aim with STRIPS2DyPDL is to
provide additional benchmarks to spur the progress of DIDP solvers, and to experimentally evaluate
the search performance of DIDP solvers with respect to classical planners. The tool is available at
https://tinyurl.com/4ubvm44r

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Combinatorial Optimisation, Automated Planning, Domain-Independent
Dynamic Programming, Planning Domain Definition Language

Introduction

Domain-Independent Dynamic Programming (DIDP) [14] is a recently introduced model-
based paradigm for solving combinatorial optimisation (CO) problems whose models and
solvers drew great inspiration from automated planning (AP) models and solvers. AP refers
to the field of problem of and algorithms associated with sequential decision making under
formally specified models. Indeed, at the core of a DIDP solver is heuristic search, a sound and
complete algorithm for finite state spaces which has also been the core of most state-of-the-art
AP solvers [2, 13, 12, 19, 21]. DIDP solvers have shown (cf. [14]) to be highly competitive
with combinatorial optimisation approaches and have shown to outperform industry grade
mixed integer programming and constraint programming solvers. Furthermore, experiments
performed in [17] show that DIDP solvers also outperform state-of-the-art planners in CO
problems modelled in the Planning Domain Definition Language (PDDL), the de facto
formalism used for modelling AP problems [18, 9].

In this paper, we conversely study the performance of DIDP solvers for classical AP
problems modelled in the Dynamic Programming Description Language (DyPDL), the
de facto formalism used for modelling DIDP problems. We implement a straightforward
translation of STRIPS, the most widely used fragment of PDDL, into PyPDL, via the
pipeline identified in Figure 1. Namely, we leverage an existing translation from STRIPS
into SAS+ [1], an alternative AP modelling language, and implement the translation from
SAS+ into PyPDL described in [17, Thm. 1]. We conduct experiments to evaluate the
performance of DyPDL solvers in their current state compared to PDDL planners on the
standard International Planning Competition (IPC) benchmark suite. We identify which
DIDP solvers perform best with respect to various planning metrics and identify strengths
and room for improvement relative to more mature PDDL planners.

mailto:dchen@laas.fr
https://orcid.org/0000-0003-4010-0279
https://tinyurl.com/4ubvm44r


2 STRIPS2DyPDL

STRIPS SAS+ DyPDL
Helmert 2009 Kuroiwa and Beck 2024

Thm. 1

Figure 1 The pipeline for translating STRIPS models for planning into DyPDL models.

Background

We begin by defining a classical planning problem as a state transition model and represen-
tations used for modelling such problems: STRIPS, SAS+, and DyPDL. Table 1 illustrates
the analogies between model components. All introduced sets are finite unless otherwise
specified. Let 2X denote the powerset of a set X. Let N denote the set of natural numbers
including zero and R≥0 the set of nonnegative real numbers.

Classical Planning Problem We follow the notation of a classical planning problem by
Geffner and Bonet [6], with the exclusion of action costs1. A classical planning problem is
a deterministic, fully-observable state transition model with a specified initial state and a
set of goal states. A solution for a classical planning problem is a plan, a finite sequence of
applicable actions that progresses the initial state to a goal state.

▶ Definition 1 (Classical Planning Problem). A classical planning problem is a tuple P =
⟨S, A, f, s0, G⟩ where the components are defined as follows.

S is the state space, a set of states.
A is a set of actions.
f : S × A → S ∪ {⊥} is a transition function where f(s, a) = s′ ≠ ⊥ denotes that the
action a is applicable in the state s where s′ represents the successor of a in s, and
otherwise f(s, a) = ⊥ denotes that a is not applicable in s.
s0 ∈ S is the initial state.
G ⊆ S is a non-empty set of goal states.

▶ Definition 2 (Plan). A plan α⃗ for a classical planning problem is a finite sequence of
actions a0, . . . , an such that si+1 = f(si, ai) ̸= ⊥ for i = 0, . . . , n and sn+1 ∈ G. The length
of a plan is equal to its number of actions. A plan is optimal if it has the minimal length
among all plans for a problem.

In the three classical planning problem models that follow, we require defining the state
space, action applicability, state successors, and goal states.

STRIPS STRIPS [4] is the simplest (ground) fragment of PDDL where states, goals and
action preconditions are represented as single facts or conjunctions of facts. The representation
of states as powersets of facts leads to compact planning representations that make planning
over STRIPS models PSPACE-complete [3].

▶ Definition 3 (STRIPS model). A STRIPS model is a tuple ⟨F, O, I, G⟩ where the components
are defined as follows.

1 The reasoning for excluding action costs is because STRIPS, the language we use to model planning
problems, has uniform action costs, i.e. each action has a cost 1. We also exclude the presentation
of action costs of all subsequent models for ease of presentation. However, our implementation and
experiments support ground action costs.



D. Z. Chen 3

F is a set of propositions. A state s in STRIPS is a subset of F where under the closed
world assumption, a proposition not in a state is presumed false. Thus, the state space of
the model is defined by S = 2F .
O is a set of actions of the form a = ⟨pre(a), add(a), del(a)⟩ where pre(a), add(a),
del(a) ⊆ F denote the preconditions, add effects, and delete effects of the action, respec-
tively.

An action a is applicable in a state s if s ⊇ pre(a).
The successor of an action a applicable in a state s is given by s′ = (s\del(a))∪add(a).

I ⊆ F is the initial state.
G ⊆ F is the goal condition. A state s is a goal state if it contains the goal condition,
i.e. s ⊇ G.

SAS+ SAS+ [1] can be viewed as an extension of STRIPS where states are represented
no longer via propositional atoms but with multi-valued state variables. The original
SAS+ definition does not fully specify the initial state but we will do so here following the
classical planning problem formalism. SAS+ is in turn a special case of the Finite Domain
Representation (FDR) [10, 11] which extends SAS+ with conditional effects and state axioms.

▶ Definition 4 (SAS+ model). A SAS+ model is a tuple ⟨V, O, s0, s∗⟩ where the components
are defined as follows.

V = {v1, . . . , vn} is a set of state variables where each vi ∈ V has a domain Dv consisting
of a set of elements. Let D+

v = Dv ∪ {⊥} where ⊥ represents an undefined value. Then
we can define the state space S = "n

i=1 Dvi
and partial state space S+ = "n

i=1 D+
vi

, noting
that S ⊂ S+. Given a (partial) state s ∈ S+, denote s[v] the value associated with v in s.
O is a set of operators (i.e. actions) of the form o = ⟨pre(o), eff(o)⟩ where pre(o), eff(o) ∈
S+ denote the precondition and effect of the operator, respectively.

An operator o is applicable in a state s if s[v] = pre(o)[v] for all v ∈ V where
pre(o)[v] ̸= ⊥.
The successor of an operator o applicable in a state s is the state s′ where s′[v] = s[v]
if eff(o)[v] = ⊥ and s′[v] = eff(o)[v] otherwise.

s0 ∈ S is the initial state.
s∗ ∈ S+ is the goal condition. A state s is a goal state if s[v] = s∗[v] for all v ∈ V where
s∗[v] ̸= ⊥.

DyPDL DyPDL [14, 17] is the formalism used to encode DIDP models. It is inspired by
the factoring of variables in STRIPS and SAS+ for encoding state transition models, and
is presented in a way that reflects the recursive nature of dynamic programming and the
Bellman backup equations. Specifically, DyPDL names what is commonly referred to as
the initial state in PDDL planning as the ‘target state’, and the goal condition as the ‘base
case’. We omit any definitions referring to costs due to the aforementioned reason that the
theoretical translation from STRIPS does not require handling action costs.

▶ Definition 5 (DyPDL model). A DyPDL model is a tuple
〈
V, T , S0, B

〉
where the compo-

nents are defined as follows.

V = {v1, . . . , vn} is a set of state variables that consists of element, set, and numeric
variables. An element variable has domain N, a set variable has domain 2N, and a
numeric variable has domain Q (rational numbers). Let Dv denote the domain of a state



4 STRIPS2DyPDL

Table 1 STRIPS, SAS+ and DyPDL model components and the analogies between them.

STRIPS SAS+ DyPDL

propositions F state variables V state variables V
actions O operators O transitions T
initial state I inital state s0 target state S0

goal condition G goal condition s∗ base case B

variables and let D+
v = Dv ∪ {⊥} where ⊥ represents an undefined value. We define the

state space by S = "n
i=1 Dvi

and partial state space by S+ = "n
i=1 D+

vi
. Given a (partial)

state s ∈ S+, denote s[v] the value associated with v in s.
T is a set of transitions (i.e. actions) of the form τ = ⟨effτ , preτ ⟩ where effτ ∈ S+ and
preτ is a set of conditions which are functions of the form c : S → {⊤, ⊥}.

A transition τ is applicable in a state s if c(s) = ⊤ for all c ∈ preτ .
The successor of a transition τ in a state s is the state s′ where s′[v] = s[v] if effτ [v] = ⊥
and s′[v] = effτ [v] otherwise.

S0 ∈ S is the target state.
B is the base case which is a set of conditions. A state s is a base state (i.e. goal state)
if c(s) = ⊤ for all c ∈ B.

STRIPS2DyPDL

STRIPS2DyPDL involves a 2 step process of translating classical planning problems represented
in STRIPS in DyPDL models as illustrated in Figure 1. The first step involves translating
STRIPS (Definition 3) into SAS+ (Definition 4), while the second involves translating SAS+
into DyPDL (Definition 5). Both steps are indeed already described in the literature with
the translation from STRIPS to SAS+2 described in [11], and the latter SAS+ into DyPDL
translation described implicitly in [17, Thm. 1].

Translating from STRIPS to SAS+ We note that there exists a naive translation from
STRIPS to SAS+ by simply converting each proposition in F into a binary state variable
and similarly for action preconditions, effects, and goals. However, this translation does not
leverage the power of mutexes induced by SAS+ representations, whereas the translation by
Helmert [11] computes invariants in order to encode mutexes into the multi-valued SAS+
state variables alongside other optimisations such as pruning of irrelevant propositions and
actions for reducing the size of the model. Notably, Helmert’s translation has an existing
and stable implementation that is used by many modern automated planners.

Translating from SAS+ to DyPDL The translation of SAS+ into DyPDL is straightforward
as DyPDL states extend SAS+ states via the introduction of numeric and set variables in
V, as opposed to just finite-valued variables. Similarly, DyPDL action preconditions, goal
conditions, and action effects generalise the same notions which constitute value assignments

2 More specifically, we mean the lifted STRIPS fragment of PDDL, where propositions have additional
attributes such as predicate and object type information. For ease of presentation, we presented
propositional STRIPS where each proposition has no additional attributes.



D. Z. Chen 5

to variables in SAS+. Indeed, Theorem 1 in [17] highlights this fact where numeric planning
(SAS+ extended with numeric variables) can be translated into DyPDL. This work implements
this direct translation.

Experiments

Benchmarks We collect STRIPS planning problems from the International Planning Com-
petitions (IPC) 1998–2023 and translate them into SAS+ [11] with the translator in Fast
Downward 24.06 [10]. We keep the problems that could be translated within 30 minutes and
8GB of memory on a cluster with Intel Xeon 3.2 GHz CPU cores, and with an output file
size of at most 128kB for a total of 660 SAS+ problems. The SAS+ files are used as input
for all planning approaches.

Approaches We evaluate the performance of DIDP solvers on classical STRIPS planning
problems translated into DyPDL models described in the previous section compared to
STRIPS baselines and planners. The DIDP solvers we experiment with are acps, apps,
caasdy, cabs [16] and lnbs [15]. The experimented STRIPS planners are blind A∗ search
(blind) and anytime LAMA (lama) [19] implemented in Fast Downward 24.06.13, the agile
configuration of decoupled state space search (decstar4) [7, 8], A∗ search with saturated cost
partitioning heuristics (scorpion5) [21, 20], and optimal planning with symbolic, bidirectional
search (symk6) [23, 22].

The following planners return provably optimal solutions, i.e. they terminate once an
optimal plan is returned and proven to be optimal: acps, apps, caasdy, cabs, lnbs, blind,
scorpion, and symk; and the following planners are anytime planners, i.e. they continue to
return plans of increasing quality over time: acps, apps, cabs, lnbs, and lama.

Evaluation All planning experiments are run on the same cluster and resource limits as
the translation process. Tables 2–4 summarise various planning performance metrics where
bold cells indicate the best score among DIDP solvers for each row, while underlined cells
indicate the best score among all approaches for each row. The metrics are described as
follows conditioned on an approach:

IPC satisficing track score (Table 2): the sum of the function which returns for each
problem P C∗/C where C∗ is the lowest plan cost over all approaches, and C the plan
cost of the planner if P is solved, and 0 otherwise.
For example, if acps returned a plan with cost 3 for a problem apps a plan with cost 4,
lama a plan with cost 4, decstar a plan with cost 5, and all other approaches failed to
find a plan, then acps gets a score of 1, apps and lama a score of 3

4 , decstar a score of
3
5 , and all other approaches a score of 0 for the problem. Results for decstar are omitted
as the configuration we experiment with is not focused on solution quality.
IPC agile track score (Table 3): the sum of the function which returns for each
problem P 1 if P is solved in less than a second, 1 − log(t)

log(300) if P is solved within 300s
and 8GB mem, and 0 otherwise. Results for scorpion and symk are omitted as these
planners are not designed for agile planning.

3 Available at https://github.com/aibasel/downward/releases/tag/release-24.06.1
4 Available at https://github.com/ipc2023-classical/planner15
5 Available at https://github.com/jendrikseipp/scorpion
6 Available at https://github.com/speckdavid/symk

https://github.com/aibasel/downward/releases/tag/release-24.06.1
https://github.com/ipc2023-classical/planner15
https://github.com/jendrikseipp/scorpion
https://github.com/speckdavid/symk


6 STRIPS2DyPDL

Table 2 IPC satisficing track scores. Evaluates quality of generated solutions.

Domain ac
ps

ap
ps

ca
as

dy

ca
bs

ln
bs

bl
in

d-
fd

de
cs

ta
r

la
ma

sc
or

pi
on

sy
mk

blocks 18.0 15.1 18.0 18.0 15.0 21.0 – 34.6 28.0 31.0
depot 3.0 3.0 4.0 3.0 2.1 6.0 – 9.0 9.0 6.0
driverlog 4.0 4.0 6.0 5.0 3.0 8.0 – 14.0 14.0 14.0
elevators 0.0 0.0 1.0 1.0 0.0 2.0 – 9.6 3.0 3.0
floortile 0.0 0.0 0.0 0.9 1.0 0.0 – 8.0 22.0 27.0
freecell 2.0 2.0 2.0 2.0 2.0 2.0 – 2.0 2.0 2.0
gripper 16.7 16.9 7.0 17.5 17.3 8.0 – 20.0 7.0 19.0
hiking 2.0 2.0 2.0 2.0 2.0 2.0 – 2.0 2.0 2.0
logistics 12.0 11.9 12.0 12.0 7.6 13.0 – 35.2 35.0 26.0
maintenance 0.0 0.0 0.0 0.0 0.0 0.0 – 0.0 0.0 0.0
miconic 75.2 86.1 45.0 72.3 66.3 55.0 – 114.7 114.0 111.0
movie 30.0 30.0 30.0 30.0 30.0 30.0 – 30.0 29.0 30.0
mprime 3.8 3.8 4.0 4.0 4.0 4.0 – 4.0 4.0 4.0
mystery 5.0 5.0 5.0 5.0 5.0 5.0 – 5.0 5.0 5.0
nomystery 3.0 3.0 3.0 3.0 2.8 3.0 – 3.0 3.0 3.0
pegsol 48.0 47.8 44.0 48.0 48.0 46.0 – 49.5 50.0 49.0
pipesworld 14.6 13.3 16.0 14.0 9.7 18.0 – 18.0 18.0 18.0
rovers 10.1 7.4 5.0 7.7 8.0 6.0 – 16.7 13.0 14.0
satellite 4.0 4.0 4.0 4.6 4.0 6.0 – 9.7 9.0 9.0
scanalyzer 6.0 6.2 9.0 8.3 6.0 9.0 – 9.0 9.0 9.0
schedule 15.3 14.4 12.0 19.8 29.0 15.0 – 107.4 40.0 38.0
sokoban 14.0 15.0 12.0 15.8 16.9 25.0 – 42.7 41.0 17.0
storage 12.2 12.0 13.0 12.2 11.0 15.0 – 15.0 15.0 15.0
termes 0.0 0.0 0.0 0.0 0.0 0.0 – 10.8 0.0 3.0
thoughtful 1.3 1.4 1.0 1.0 0.9 2.0 – 2.0 2.0 2.0
tpp 10.1 8.5 5.0 8.6 9.2 6.0 – 11.0 12.0 8.0
transport 5.6 5.2 6.0 6.0 3.8 6.0 – 6.0 6.0 6.0
visitall 1.7 1.1 0.0 0.3 1.3 0.0 – 2.9 1.0 0.0
woodworking 5.0 5.0 5.0 5.2 4.3 7.0 – 7.0 7.0 7.0
zenotravel 7.0 5.1 7.0 7.0 4.2 8.0 – 10.8 11.0 11.0

Total 329.6 329.3 278.0 333.9 314.5 328.0 – 609.5 511.0 489.0
Best in Domain (DIDP) 14 9 18 18 11 – – – – –
Best in Domain (Overall) 6 6 9 8 6 13 – 27 17 16

IPC optimal track score (Table 4): the sum of the function which returns for each
problem P 1 if the problem is solved optimally and 0 otherwise. Results for decstar and
lama are omitted as they are not provably optimal solvers.

Results

We present our results by answering the following questions with regards to various planning
metrics for solution quality, planning speed, and provably optimal planning performance.

(1) Which DIDP solver performs best for quality-focused planning, and how does it
compare to PDDL planners? We refer the reader to Table 2 for IPC satisficing score
scores to answer this question. In terms of total score, complete anytime beam search
(cabs) performs best out of all DIDP solvers, which reflects the observation that cabs does
best in CO problems out of existing DIDP solvers. However, the only DIDP solver that
is not anytime, caasdy, despite having the worse total score is the tied best DIDP solver
on the most domains. This is because caasdy gets no score unless it solves a problem
(optimally) in which case it gets 1. Thus, in domains where caasdy is able to solve problems
it generally achieves higher scores compared to other DIDP solvers which find solutions faster
but prove optimality slower. Furthermore, cabs achieves a greater score than blind, a blind,
forward search planner. This suggests that DIDP implementations are quite efficient despite
supporting different modelling features and being very recently introduced. However, they



D. Z. Chen 7

Table 3 IPC agile track scores. Evaluates speed of generating solutions.

Domain ac
ps

ap
ps

ca
as

dy

ca
bs

ln
bs

bl
in

d-
fd

de
cs

ta
r

la
ma

sc
or

pi
on

sy
mk

blocks 14.9 14.2 15.3 14.6 15.8 16.8 35.0 34.9 – –
depot 3.0 3.0 2.4 3.3 3.5 3.0 8.9 9.0 – –
driverlog 3.9 3.8 4.2 4.0 4.3 5.4 14.0 14.0 – –
elevators 0.7 0.7 0.6 0.6 0.6 1.1 10.0 10.0 – –
floortile 0.0 0.0 0.0 0.1 0.5 0.0 6.9 3.3 – –
freecell 2.0 2.0 1.7 2.0 2.0 2.0 2.0 2.0 – –
gripper 20.0 20.0 5.7 20.0 20.0 6.4 20.0 20.0 – –
hiking 1.4 1.4 1.6 1.3 1.2 2.0 2.0 2.0 – –
logistics 11.9 11.8 11.0 11.1 11.5 12.0 36.0 36.0 – –
maintenance 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0 – –
miconic 111.8 113.4 39.3 82.2 86.0 43.2 115.0 115.0 – –
movie 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 – –
mprime 4.0 4.0 3.9 3.5 3.6 4.0 4.0 4.0 – –
mystery 5.0 5.0 5.0 4.8 5.0 5.0 5.0 5.0 – –
nomystery 1.0 1.0 0.6 0.4 0.5 2.1 3.0 3.0 – –
pegsol 47.8 47.7 37.0 46.8 47.6 41.3 47.2 49.6 – –
pipesworld 17.5 17.4 13.3 16.9 17.0 15.9 18.0 18.0 – –
rovers 16.0 16.0 4.2 15.6 16.0 4.5 17.0 17.0 – –
satellite 5.0 4.8 3.7 5.6 5.9 4.1 10.0 10.0 – –
scanalyzer 7.4 7.8 6.0 7.3 7.3 6.8 9.0 9.0 – –
schedule 26.7 21.6 9.9 22.5 31.0 11.9 107.0 108.0 – –
sokoban 9.4 10.6 8.8 9.7 13.4 10.5 33.1 31.3 – –
storage 14.3 14.6 11.7 12.8 12.9 13.2 15.0 15.0 – –
termes 0.0 0.0 0.0 0.0 0.0 0.0 6.1 7.3 – –
thoughtful 0.5 1.2 0.1 0.0 1.0 0.9 2.0 2.0 – –
tpp 12.0 11.7 5.0 8.6 10.6 5.3 12.0 12.0 – –
transport 5.3 5.0 4.4 5.4 5.7 5.5 6.0 6.0 – –
visitall 2.9 2.9 0.0 2.4 3.0 0.0 2.7 3.0 – –
woodworking 5.6 6.6 4.3 5.6 5.7 4.7 7.0 7.0 – –
zenotravel 7.0 6.9 5.9 6.9 6.9 6.9 11.0 11.0 – –

Total 386.9 385.1 235.6 343.9 368.6 264.5 599.7 594.4 – –
Best in Domain (DIDP) 16 15 5 5 16 – – – – –
Best in Domain (Overall) 6 5 2 3 5 5 26 26 – –

are outperformed by advanced planners which have access to strong domain-independent
heuristics (lama and scorpion) and state representations (symk).

(2) Which DIDP solver performs best for speed-focused planning, and how does it
compare to PDDL planners? We refer the reader to Table 3 for IPC agile scores to answer
this question. In terms of number of domains a DIDP solver does best in, acps and lnbs
are tied, while acps very marginally outperforms lnbs in total IPC agile score. Furthermore,
the anytime DIDP solvers outperfom blind. However, we note that solution quality is not
a factor in the IPC agile score, such that anytime solvers which begin by trying to find
any solution quickly unsurprisingly outperform non-anytime optimal solvers that have to
prove optimality of their solutions (caasdy and blind). Again, advanced planners achieve
higher scores as they have access to domain-independent heuristics (lama) and problem
reformulations (decstar) neither of which DIDP solvers in their current state support.

(3) Which DIDP solver performs best for provably optimal planning, and how does it
compare to PDDL planners? We refer the reader to Table 4 for IPC optimal scores to
answer this question. Conversely to previous notes in (1) and (2), non-anytime optimal
DIDP planners take longer to return a solution but generally prove optimality of solutions
faster. This is reflected in the observation that the non-anytime optimal caasdy solver
performs best in both total score and number of best placements per domain out of all DIDP
solvers. However, we now notice a larger margin between DIDP solvers and the blind search



8 STRIPS2DyPDL

Table 4 IPC optimal track scores. Evaluates speed of generating provably optimal solutions.

Domain ac
ps

ap
ps

ca
as

dy

ca
bs

ln
bs

bl
in

d-
fd

de
cs

ta
r

la
ma

sc
or

pi
on

sy
mk

blocks 18 15 18 18 15 21 – – 28 31
depot 3 3 3 3 2 6 – – 9 6
driverlog 4 4 5 5 3 8 – – 14 14
elevators 0 0 0 0 0 2 – – 3 3
floortile 0 0 0 0 0 0 – – 22 27
freecell 2 2 2 2 2 2 – – 2 2
gripper 7 6 7 7 5 8 – – 7 19
hiking 2 2 2 2 2 2 – – 2 2
logistics 12 11 12 12 6 13 – – 35 26
maintenance 0 0 0 0 0 0 – – 0 0
miconic 45 45 45 45 45 55 – – 114 111
movie 30 30 30 30 30 30 – – 29 30
mprime 1 1 1 1 1 4 – – 4 4
mystery 2 2 2 2 2 5 – – 5 5
nomystery 3 3 3 3 1 3 – – 3 3
pegsol 42 42 42 42 42 46 – – 50 49
pipesworld 14 12 14 14 6 18 – – 18 18
rovers 4 4 4 4 4 6 – – 13 14
satellite 4 4 4 4 4 6 – – 9 9
scanalyzer 6 6 9 6 6 9 – – 9 9
schedule 3 3 3 3 3 15 – – 40 38
sokoban 10 10 10 10 9 25 – – 41 17
storage 12 12 12 12 10 15 – – 15 15
termes 0 0 0 0 0 0 – – 0 3
thoughtful 0 0 0 0 0 2 – – 2 2
tpp 5 5 5 5 5 6 – – 12 8
transport 4 4 6 6 3 6 – – 6 6
visitall 0 0 0 0 0 0 – – 1 0
woodworking 5 4 5 5 4 7 – – 7 7
zenotravel 7 5 7 7 4 8 – – 11 11

Total 245 235 251 248 214 328 – – 511 489
Best in Domain (DIDP) 27 21 31 29 17 – – – – –
Best in Domain (Overall) 5 5 7 6 4 13 – – 25 22

planner blind as optimal planning most highlights the optimisation benefit that automated
planners gain from solving their intended problems. This is because blind optimal planning
requires generating all states with optimal cost from the initial state lower bounding the
optimal plan cost as quickly as possible.

Conclusion

We introduce the STRIPS2DyPDL tool for translating automated planning problems modelled
in STRIPS into Domain-Independent Dynamic Programming (DIDP) problems modelled
in the Dynamic Programming Description Language (DyPDL). We conduct experiments
to evaluate the best performing DIDP models under different automated planning metrics
on a large suite of automated planning benchmarks. We find that current DIDP models,
which use blind search without heuristic guidance, perform favourably compared to blind
automated planners. This is despite the fact that DIDP supports an orthogonal set of
modelling features, and that automated planners are several decades more mature and hence
are more optimised for planning. We hope that benchmarks induced by STRIPS2DyPDL from
planning benchmarks will spur the progress of DIDP solvers. Future work could include
extending STRIPS2DyPDL to handle more expressive planning model features present in PDDL
such as state axioms [24] via state functions introduced in DyPDL 0.9.0, and numeric state
representations [5] via existing DyPDL features.



D. Z. Chen 9

References
1 Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Comput.

Intell., 11:625–656, 1995.
2 Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5–33,

2001.
3 Tom Bylander. The computational complexity of propositional STRIPS planning. Artif. Intell.,

69:165–204, 1994.
4 Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.
5 Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning

domains. J. Artif. Intell. Res., 20:61–124, 2003.
6 Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated

Planning. Morgan & Claypool Publishers, 2013.
7 Daniel Gnad and Jörg Hoffmann. Star-topology decoupled state space search. Artif. Intell.,

257:24–60, 2018.
8 Daniel Gnad, Álvaro Torralba, and Alexander Shleyfman. Decstar. International Planning

Competition 2023 Classical Track Planner Abstracts, 2023.
9 Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduction to

the Planning Domain Definition Language. Morgan & Claypool Publishers, 2019.
10 Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., pages 191–246,

2006.
11 Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artif. Intell.,

173(5-6):503–535, 2009.
12 Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What’s

the difference anyway? In ICAPS, 2009.
13 Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through

heuristic search. J. Artif. Intell. Res., 14:253–302, 2001.
14 Ryo Kuroiwa and J. Christopher Beck. Domain-independent dynamic programming: Generic

state space search for combinatorial optimization. In ICAPS, 2023.
15 Ryo Kuroiwa and J. Christopher Beck. Large neighborhood beam search for domain-

independent dynamic programming. In CP, 2023.
16 Ryo Kuroiwa and J. Christopher Beck. Solving domain-independent dynamic programming

problems with anytime heuristic search. In ICAPS, 2023.
17 Ryo Kuroiwa and J. Christopher Beck. Domain-independent dynamic programming. CoRR,

abs/2401.13883, 2024.
18 Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M.

Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language.
Technical report, 1998.

19 Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res., 39:127–177, 2010.

20 Jendrik Seipp. Scorpion 2023. International Planning Competition 2023 Classical Track
Planner Abstracts, 2023.

21 Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated cost partitioning for optimal
classical planning. J. Artif. Intell. Res., 67:129–167, 2020.

22 David Speck. Symk – a versatile symbolic search planner. International Planning Competition
2023 Classical Track Planner Abstracts, 2023.

23 David Speck, Jendrik Seipp, and Álvaro Torralba. Symbolic search for cost-optimal planning
with expressive model extensions. J. Artif. Intell. Res., 82, 2025.

24 Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of PDDL axioms. Artif.
Intell., 168(1-2):38–69, 2005.


	Introduction
	Background
	STRIPS2DyPDL
	Experiments
	Results

	Conclusion

