MOOSE: Satisficing and Optimal Generalised Planning via Goal Regression

Dillon 7. Chen

Till Hofmann

Toryn Q. Klassen

Sheila A. McIlraith

PDDL (STRIPS) Planning

A **domain** is a set of first-order predicates and action schemata $\mathcal{D} = \langle \mathcal{P}, \mathcal{A} \rangle$

A **problem** is a domain, initial state, goal cond. and finite set of objects $P = \langle \mathcal{D}, s^0, g, O \rangle$

A **plan** α is sequence of actions that progresses s^0 to a state satisfying g

Closed World Assumption

Fully Observable Environment

Deterministic Actions

PDDL Planning: Household Robot Example

Domain

```
(:action move
  :parameters (?from ?to)
  :precondition (and (atRobot ?from))
                                        action schema
  :effect (and (atRobot ?to)
     (not (atRobot ?from))))
(:action pickUp
  :parameters (?obj ?loc)
  :precondition (and (at ?obj ?loc) predicate
     (atRobot ?loc) (handFree))
  :effect (and (holding ?obj) (not (at ?obj ?loc))
      (not (handFree))))
(:action putDown
  :parameters (?obj ?loc)
  :precondition (and (holding ?obj) (atRobot ?loc))
  :effect (and (at ?obj ?loc) (handFree)
     (not (holding ?obj))))
```

Problem

```
(:objects dog ball apple mango cake)
(:init
  (hungry dog)
  (at mango bedroom)
  (at cake livingRoom)
  (at apple kitchen)
  (at ball backyard)
  (atRobot backyard)
)
(:goal
  (at cake kitchen)
  (at ball storageRoom)
)
(:goal
  (at cake kitchen)
  (at ball storageRoom)
```

Solutions as *Plans*

```
(pickUp ball)
(move backyard storageRoom)
(putDown ball)
(move livingRoom)
(pickUp cake)
(move kitchen)
(putDown cake)
```

A plan must be generated for every problem

Problem Statement: Generalised Planning (GP)

A **GP problem** is a set of train and test problems $\langle \mathcal{P}_{train}, \mathcal{P}_{test} \rangle$ from the same domain

A generalised plan (GPlan) π is a *program* that

- is *synthesised* from P_{train}
- can be *instantiated* to solve problems in ${\it P}_{test}$

focus on extrapolation setting:

 $f(\mathbf{P_{test}}) > f(\mathbf{P_{train}})$ where f(X) denotes the maximum number of objects in X

Generalised Planning: Blocksworld Example

Training Problems Ptrain

Testing Problems P_{test} : more blocks than seen in training problems

GP Visualised – Inputs

GP Visualised – Step 1: Synthesis

GP Visualised – Step 2: Instantiation

GP Visualised

Metrics

Synthesis Cost Costs (e.g. data, time, memory) to synthesise a generalised plan

Instantiation Cost

Costs (e.g. time, memory) to instantiate a generalised plan on new problems

Solution Quality

Quality of plans returned from instantiating a generalised plan on new problems

Generalised Planning is Hard!

Generalised Planning is Hard!

- Space of generalised plans is huge
- Some GP models are EXPSPACE-complete [1,2]
- Classical planners are still better than existing generalised planners [3]

Knowledge Representation Techniques Can Help Solve GP Problems

Goal Regression

- Goal regression [4] computes the minimal and sufficient condition for achieving a goal ${\it g}$ via an action ${\it a}$
 - ⇒ efficient policy space search
- PDDL STRIPS goal regression is defined by

$$regr(g, a) = (g \setminus add(a)) \cup pre(a)$$

Methodology: (1) Synthesising GPlans via Goal Regression

Synthesise a GPlan π in the form of a <u>set of first-order rules</u> from P_{train} by

- 1. compute optimal plans $\{a_1,...,a_n\}$ for single goal atoms in some order $\{g_1,...,g_n\}$ for each training problem $P \in P_{train}$
- 2. perform goal regression on goals \mathbf{g}_i with corresponding plans $\mathbf{\pi}_i$ to get a set of partial-state, macro-action pairs $\langle \boldsymbol{\sigma}_i, \boldsymbol{a}_i \rangle$ where $\boldsymbol{a}_i = \boldsymbol{a}_1, ..., \boldsymbol{a}_n$
- 3. lift the set of pairs $\langle \sigma_i, \sigma_i \rangle$ and goals g_i into a set of first-order rules

state condition goal condition actions
$$\left\{\exists \{X\} \middle \bigwedge_{i=1,...,m} p_i^s(X_i^s) \middle \bigwedge \bigwedge_{j=1,...,n} p_j^g(X_j^g) \rightarrow \alpha_1(X_1^a), ..., \alpha_q(X_q^a)\right\}$$

```
putDown
var: ?obj, ?loc
pre: atRobot(?loc), holding(?obj)
add: at(?obj, ?loc), handFree()
del: holding(?obj)
```

move
var: ?from, ?to
pre: atRobot(?from)
add: atRobot(to)
del: atRobot(?from)

. . .

transportation domain

initial state and goal condition

find a plan and progress the initial state

regress the goal with the plan

lift the regressed states into rules

STRIPS Domain

Generalised Plan

```
rule1
var: ?obj, ?loc
sCond: atRobot(?loc), holding(?obj)
gCond: at(?obj, ?loc)
actions: putDown(?obj, ?loc)

rule2
var: ?obj, ?ll, ?l2
sCond: atRobot(?ll), holding(?obj)
gCond: at(?obj, ?l2)
actions: move(?ll, ?l2), putDown(?obj, ?l2)
```

Methodology: (2) Instantiating GPlans via Database Algorithms

Instantiate a GPlan π on a problem $P \in P_{test}$ by treating it as a policy

speed focused GP

- 1. set $\mathbf{s} = \mathbf{s}_0$ and while the goal has not been achieved, repeat the following steps
- 2. ground a lifted rule where $\Lambda_{i=1,...,m} p_i^s(X_i^s)$ holds in s and $\Lambda_{j=1,...,n} p_j^g(X_j^g)$ holds in s
- 3. apply corresponding sequence of actions $\alpha_1(X_1^a)$, ..., $\alpha_q(X_q^a)$ on s

ground with first-order query algorithms

Methodology: (3) Instantiating GPlans via Search

Instantiate a GPlan π on a problem $P \in P_{test}$ with search space pruning via PDDL axioms

1. encode axioms that detect unachieved goals

$$p_{ug}(X) := p_g(X) \land \neg p(X)$$

quality focused GP

2. encode axioms that restrict action application based on learned rules

$$(\alpha_1)_{\pi}(X) := \bigwedge_{i=1,\ldots,m} p_i^s(X_i^s) \wedge \bigwedge_{j=1,\ldots,n} (p_j^g)_{ug}(X_i^g)$$

3. feed transformed PDDL problem into a planner that supports axioms

Methodology Summary

- 1. Synthesise plans via goal regression
 - o goal regression greatly reduces synthesis costs
- 2. Instantiate plans via policy execution with conjunctive query algorithms
 - database query algorithms greatly reduce instantiation costs
- 3. Instantiate plans via search with PDDL axiom encodings
 - search provides optimal solutions and high solution quality

Experimental Results

Recall: 3 Primary GP Metrics

Synthesis Cost Costs (e.g. data, time, memory) to synthesise a generalised plan

Instantiation Cost

Costs (e.g. time, memory) to instantiate a generalised plan on new problems

Solution Quality

Quality of plans returned from instantiating a generalised plan on new problems

Synthesis Experiments

Satisficing Planning Experiments

Optimal Planning Experiments

Synthesis Experiments

- 8 PDDL benchmark domains
- Compare against *3 configurations* of the Sketch Learner [5] generalised planner
- 32 GB memory
- 12 hour runtime limit
- 5 repeats per domain

Synthesis Results

Average time and memory usage (↓)

MOOSE uses		Time (s)				Memory (MB)				
<1GB memory and synthesises GPlans for all domains	SLEARN-0	SLEARN-1	SLEARN-2	Moose	SLEARN-0	SLEARN-1	SLEARN-2	Moose		
Barman	-	-	-	202	-	-	-	184		
Ferry	21	12	2	9	184	134	76	52		
Gripper	3	9	45	10	66	142	391	64		
Logistics	-	-	-	71	-	-	-	73		
Miconic	57	1	3	12	381	56	125	52		
Rovers	-	-	-	534	-	-	-	187		
Satellite	-	-	1559	514	-	-	7598	82		
Transpor	rt -	12	12	21	-	114	129	80		

Synthesis Experiments

Satisficing Planning Experiments

Optimal Planning Experiments

Satisficing Planning Experiments

- 8 classical domains and 4 numeric domains
- Compare against:
 - Classical planners: Sketch Learner [5], LAMA [6]
 - Numeric planners: ENHSP(mrp+hj) [7], ENHSP(M(3h||3n) [8]
- 8 GB memory
- 30 minute runtime limit
- 5 repeats per problem

Satisficing Planning Results

Cumulative coverage (†)

The number of problems (*y-axis*) that a planner solves within *n* seconds (*x-axis*)

Satisficing Planning Results

Coverage per domain (↑)

				Domain	SLEARN-(SLEARN-	SLEARN-	LAMA	Moose
	(u)			Barman	0.0	0.0	0.0	49	90.0
	$\mathbf{M}(3h\ 3n)$	MRP+HJ	Moose	Ferry	15.0	67.0	60.0	69	90.0
D	1(3)	I(3)		Gripper	59.6	50.8	33.0	65	90.0
Domain		Σ		Logistics	0.0	0.0	0.0	77	89.6
NFerry	60	61	90.0	Miconic	68.8	72.6	67.8	77	90.0
NMiconic	63	71	90.0	Rovers	0.0	0.0	0.0	66	90.0
NMinecraft	30	66	90.0	Satellite	0.0	29.2	34.6	89	90.0
NTransport	44	64	90.0	Transport	0.0	63.0	46.8	66	90.0
$\sum (360)$	197	262	360.0	$\sum (720)$	143.4	282.6	242.2	558	719.6

Synthesis Experiments

Satisficing Planning Experiments

Optimal Planning Experiments

Optimal Planning Experiments

- 8 classical domains
- use SymK [9] as downstream planner that supports PDDL axioms
- Compare against SymK without axioms and Scorpion [10]
- 8 GB memory
- 30 minute runtime limit
- 5 repeats per problem

Optimal Planning Results

Summary Slide

Problem

Synthesise generalised plans for solving families of planning problems

Method

→ improve synthesis efficiency
 Instantiate via database query algorithms
 → improve planning speed
 Instantiate via encoding rules as pruning axioms

→ improve solution quality

Synthesise via goal regression

Theory

See paper for soundness and completeness theorems

Experiments

Improvements on the 3 metrics of synthesis cost, instantiation cost, and solution quality

