Language Models For Generalised PDDL Planning: Synthesising Sound and Programmatic Policies

Dillon Z. Chen

Johannes Zenn

Tristan Cinquin

Sheila A. McIlraith

PDDL Planning

- sequential decision making on first-order, finite domain, symbolic models [1, 2]
- PDDL de facto formalism for fully-observable, deterministic transition models

INPUT: PDDL planning problem

OUTPUT: plan - a sequence of actions that progresses the initial state to a goal

Q: How can we best use LLMs for PDDL planning?

A: By generating *sound* planning programs!

(1) Generate Plans

PDDL (define (domain jug-pouring) (:requirements :typing :fluents) (:types jug) (:functors (amount ?j -jug) (capacity ?j -jug) - (fluent number)) (:action empty :parameters (?jug1 ?jug2 - jug) :precondition (fluent-test (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))) :effect (and (change (amount ?jugl) 0) (change (amount ?jug2) (+ (amount ?jug1) (amount ?jug2)))))

(2a) Generate Planning Programs

Generalized Planning in PDDL Domains with Pretrained Large Language Models

Tom Silver¹, Soham Dan², Kavitha Srinivas²,

Joshua Tenenbaum¹, Leslie Kaelbling¹, Michael Katz²

¹MIT Computer Science and Artificial Intelligence Laboratory; ²IBM Research

AAAI'24

Chen, D.; Zenn, J.; Cinquin, T.; McIlraith, S. Language Models For Generalised PDDL Plan	nning: Synthesising Sound and Programmatic Policie	PRL@RLC-25
Approach	Sound	No External Planner
Generalized Planning in PDDL Domains with Pretrained Large Language Models Tom Silver ¹ , Soham Dan ² , Kavitha Srinivas ² , Joshua Tenenbaum ¹ , Leslie Kaelbling ¹ , Michael Katz ² ¹ MIT Computer Science and Artificial Intelligence Laboratory; ² IBM Research AAAI'24		
LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? Alexander Tuisov ¹ , Yonatan Vernik ² , Alexander Shleyfman ² Technion, Haifa, Israel Bar-llan University, Ramat Gan, Israel Arxiv'25		
Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code Augusto B. Corrèa University of Cotord United Kingdom Federal University of Ris Grande do Sul Brazil Arxiv/25		

Contribution 1: Sound LM Programs without External Planners

Chen, D.; Zenn, J.; Cinquin, T.; McIlraith, S.

 $\pi(Action \mid State, Problem) \in set of applicable actions in State$

Approach	Sound	No External Planner		
Generalized Planning in PDDL Domains with Pretrained Large Language Models Tom Silver¹, Soham Dan², Kavitha Srinivas², Joshua Tenenbaum¹, Leslie Kaelbling¹, Michael Katz² ¹MIT Computer Science and Artificial Intelligence Laboratory; ²IBM Research				
LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? Alexander Tuisov ¹ , Yonatan Vernik ² , Alexander Shleyfman ² ¹ Technion, Haifa, Israel ² Bar-llan University, Ramat Gan, Israel Arxiv'25				
Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code Augusto B. Curria University of Oxford United Kingdom Federal University of Kito Grande do Sul Linksping University Sweden Arxiv/25				
Language Models For Generalised PDDL Planning: Synthesising Sound and Programmatic Policies				
PRL@RLC'25!! (ours)				

PRL@RLC-25

Results: LMs can generate powerful, sound planning programs

Baselines: state-of-the-art planners

Results: LMs can generate powerful, sound planning programs

- Baselines: state-of-the-art planners
- Metric (†): number of problems solved correctly in time and memory limit

Planner	Problems Solved Problems Solved Rat			
GBFS + h ^{FF}	430	48%		
WL-GOOSE	502	56%		
LAMA	557	62%		
[ours] LMPlan	563	63%		
[ours] LMPlan + Search	630	70%		

Contribution 2: Sound Programs Can Plan with Meaningless Symbols

Setup: Replace Natural Language with Meaningless Symbols

```
(define (domain blocksworld)
(:requirements :strips)
(:predicates (clear ?x)
             (on-table ?x)
             (arm-empty)
             (holding ?x)
             (on ?x ?v))
(:action pickup
 :parameters (?ob)
 :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
 :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))
              (not (arm-empty))))
(:action putdown
 :parameters (?ob)
 :precondition (holding ?ob)
 :effect (and (clear ?ob) (arm-empty) (on-table ?ob)
               (not (holding ?ob))))
(:action stack
 :parameters (?ob ?underob)
 :precondition (and (clear ?underob) (holding ?ob))
 :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
              (not (clear ?underob)) (not (holding ?ob))))
(:action unstack
 :parameters (?ob ?underob)
 :precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
 :effect (and (holding ?ob) (clear ?underob)
              (not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty)))))
```

```
(define (domain dom)
   (:requirements :strips :typing)
    (:predicates (p0 ?x0) (p1 ?x0) (p2 ?x0) (p3) (p4 ?x0 ?x1))
   (:action a0
        :parameters (?x0 ?x1)
       :precondition (and (pl ?xl) (p0 ?x0))
       :effect (and (p3) (p1 ?x0) (p4 ?x0 ?x1) (not (p1 ?x1))
               (not (p0 ?x0)))
    (:action al
        :parameters (?x0)
        :precondition (and (p1 ?x0) (p2 ?x0) (p3))
       :effect (and (p0 ?x0) (not (p1 ?x0)) (not (p2 ?x0)) (not (p3)))
     (:action a2
        :parameters (?x0)
       :precondition (p0 ?x0)
        :effect (and (p1 ?x0) (p3) (p2 ?x0) (not (p0 ?x0)))
    (:action a3
        :parameters (?x0 ?x1)
       :precondition (and (p4 ?x0 ?x1) (p1 ?x0) (p3))
       :effect (and (p0 ?x0) (p1 ?x1) (not (p4 ?x0 ?x1)) (not (p1 ?x0))
               (not (p3)))
```

LLM performance (surprisingly!) does not degrade significantly when removing language from inputs

Language Models For Generalised PDDL Planning: Synthesising Sound and Programmatic Policies

Contribution 1: Sound LM Programs without External Planners

Planner	Problems Solved	Problems Solved Ratio		
GBFS + h ^{FF}	430	48%		
WL-GOOSE	502 56%			
LAMA	557	62%		
LMPlan	563	63%		
LMPlan + Search	630	70%		

Contribution 2: Sound Programs Can Plan with Meaningless Symbols

	Bl	Ch	Fe	Fl	Mi	Ro	Sa	So	Sp	Tr	Σ
$\overline{V_{ m sem}}$	33	15	59	2	63	32	60	32	46	55	397
$V_{ m sym}$	33	24	61	1	70	34	48	30	63	42	406
π_{sem}	90	11	90	0	90	12	90	0	90	90	563
π_{sym}	1	12	90	0	90	46	6	0	90	89	424