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Classical k-WL Hierarchy

k-Weisfeiler-Lehman (k-WL) hierarchy is a theoretical framework for
graph isormorphism tests

< but not practically useful when k > 3!

e GIN = 1-WL [Xu et al., 2019]
® Many expressive GNNs go beyond 1-WL

Question:

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?
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Our A-WL Hierarchy

A -WL hierarchy computes node coloring via t-order induced subgraphs
within d-hop neighbourhoods.

d-hop neighbourhoods t-order induced subgraphs
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A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:
® None-or-all: none by 1-WL but all by 3-WL
® Progressive: varying with d and t by .#-WL

1-WL indistinguishable pairs
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Observations and Theorems

Increasing the order of induced subgraphs, the expressive power increases
— Not surprising

Theorem:
(Weak Hierarchy) A~ (t,d)-WL C A"~ (t+1,d)-WL

Increasing the hops of neighbourhood, the expressive power may decrease
— Surprising but can be fixed

Theorem: N (t,d)-WL € A (t+1,d)-WL
(Strong Hierarchy) A(t,d)-WL C A/(t, d+1)-WL

Induced connected subgraphs remain the same expressive power
— Surprising but can be proved

Theorem:

(Equivalence) N €(t,d)-WL = A (t,d)-WL
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Theorem:

(Strong Hierarchy)

We prove strictness of hierarchies by constructing counterexample graphs.

Main Ideas in Proofs (1)
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Main ldeas in Proofs (2)

Theorem:
(Equivalence) N E(t,d)-WL = A#(t,d)-WL

Our proof is based on Kocay's Vertex Theorem [Kocay, 1982].
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k-WL Hierarchy vs .4"-WL Hierarchy
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Theorem: 1-WL = #/(1,1)-WL = .#(1,1)-WL
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G3N Architecture

Graph Neighbourhood Neural Network (G3N) instantiates the ideas of
A -WL algorithms for graph learning.
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