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Abstract. Previous studies have shown that leveraging data be-
yond optimal training plans improves the learning of search guidance
for planning. Specifically, state ranking information can be extracted
from states on optimal plan traces and their siblings. In this paper,
we generalise this approach by extracting additional rankings from
the A� search tree for generating optimal training plans. As in the
previous approach, we incur no additional search effort and negligi-
ble computational overhead for data extraction. However, extracting
more data in this way may introduce many redundant features and
states which slows down training.We formalise the problem of sound,
redundant feature pruning and show that it is NP-complete to solve.
Furthermore, we introduce several algorithms and approximations for
redundant feature pruning. Experiments show that rankings learned
by extractingmore data from search trees for generating optimal train-
ing plans improve planner coverage. However, pairing with unsound
pruning methods often results in diminishing performance, while
our sound feature pruning methods provide consistent improvements
across tested domains.

1 Introduction

In the age of deep learning and large models, it is still the case in
the context of learning to plan that classical machine learning ap-
proaches reign supreme [24, 25, 29, 9, 7]. Under the hood, the cur-
rently most effective approaches have two key ingredients. The first
is the use of automatically generated, symbolic features for planning,
namely Description Logic Features [21] and Weisfeiler-Leman Fea-
tures [27]. Such features are at least as expressive as deep learning
models and have the additional benefits of being much faster to com-
pute as well as being interpretable. The second ingredient is methods
for learning search guidance in the form of rankings between pairs of
states [12, 15, 5]. These methods learn to rank states on the optimal
path as preferable to their siblings. The learning task is framed as a
classification problem, from which a pointwise ranking function can
be derived and integrated with off-the-shelf classical planners. This
approach has shown improved performance over regression-based
heuristics trained to learn the optimal cost-to-goal (h∗) of states on
the optimal path [1, 26, 17, 10, 6], in part because sibling states are
included in the learning process without needing to compute their h∗

value.
However, these approaches are not without their drawbacks. Ex-

isting ranking approaches restrict the exploration boundary only to
the siblings of optimal-path states, leaving the rest of the state space
unaccounted for [8, 15]. In this paper, we generalise pairwise rank-

ing beyond this boundary by introducing new relationships that can
be automatically extracted from the search space explored by A� to
compute an optimal plan. As before, these new relationships are ob-
tained without extra search effort and with negligible computational
overhead. As a result, our approach generates a substantial amount of
new relationships and features not present in previous approaches.

Unfortunately, as the problem size grows, the number of features
and relationships increases significantly, resulting in more time and
memory being required to train amodel. A cause of this blowup is that
the generated features can be semantically equivalent and symmetric
with one another, raising concerns about redundancy, which may
slow down training and increase overfitting. A naive approach might
be to compute all redundant sets of features and arbitrarily choose
one feature from each set, discarding the rest. However, this naive
method is unsound as it may prune features that are necessary for
the computation of more complex features that are not redundant.
We define such features as ‘dependent’ features. We show that sound
pruning of redundant and dependent features is NP-complete, and
provide a range of sound and unsound feature pruning methods.

Our experiments on the 2023 International Planning Competition
Learning Track demonstrate that our new ranking method generates
one order of magnitude more data on average and up to two orders of
magnitude more. Moreover, the learnt ranking improves the planner
coverage when the new data is combined with sound feature pruning.

The paper is organised as follows. Section 2 provides the necessary
background. Section 3 presents our first main contribution, namely
our new ranking data generation approach leveraging A� search trees.
Section 4 introduce our secondmain contribution about (sound) prun-
ing of redundant and dependent features. Section 5 describes our ex-
perimental results, and Sections 6 and 7 presents related and future
work, respectively.

2 Background
This section provides background on the planning task, optimal rank-
ing functions, and Weisfeiler-Leman Features (WLFs) for planning.
WLFs provide a concrete example of the redundant and dependent
features we deal with in Section 4 and are used in the experiments in
Section 5.

2.1 Planning

Let [[n]] denote the set of integers {1, . . . , n}. A planning task can
be understood as a state transition model [13] given by a tuple P =
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〈S,A,C, s0,G〉where S is a set of states,A a set of actions, s0 ∈ S an
initial state, C an action cost function, and G ⊆ S a set of goal states.
Each action a ∈ A is a function a : S → S ∪ {⊥} where a(s) = ⊥
if a is not applicable in s, and otherwise a(s) ∈ S is the successor
state when a is applied to s. We denote the set of successor states of s
by Ns = {a(s) | a ∈ A, a(s) 	= ⊥}. The cost function C(a) ∈ R>0

returns the cost of applying action a. A unit-cost task is one for which
all actions have cost 1. A solution for a planning task is a plan: a
sequence of actions π = a1, . . . , an where si = ai(si−1) 	= ⊥ for
i ∈ [[n]] and sn ∈ G. A planning task is solvable if there exists at least
one plan. The cost of a plan is given by the sum of its action costs:
C(π) =

∑
i∈[[n]] C(ai), and a plan is optimal if its cost is minimal

among all plans for a task.
A� search is the de facto search algorithm for optimal planning. It

makes use of a heuristic function of the form h : S → R representing
an estimated cost to reach the goal from a state if it is solvable,
and ∞ otherwise. The optimal heuristic h∗(s) of a state s is the
optimal cost to reach the goal from s if a plan exists from s, otherwise
h∗(s) = ∞. A� search prioritises state expansion with the evaluation
function f(s) = g(s) + h(s) where g(s) is the cost of reaching
state s from s0 and h(s) is the heuristic value of s. A heuristic h
is admissible if, ∀s ∈ S, h(s) ≤ h∗(s). A� uses two lists: (1) an
open list (O) containing states that have been generated but not yet
expanded, sorted by increasing f values, and (2) a closed list (C)
containing states that have already been expanded. At each iteration,
the state with the lowest f value in O is popped and moved to C. If
the state is not a goal, the successors of the state are generated and
added to O. The operations are repeated until a goal is found. For a
solvable task, A� Search with node reopening guarantees to find an
optimal solution if the heuristic function h(s) is admissible.

2.2 Optimal Ranking
The recent advancements in machine learning have motivated the
development of new methods to learn search guidance. Most of these
try to learn a heuristic by formulating the problem as a regression
task with the optimal heuristic h∗ as a target, and train the model with
state-value pairs (s∗, h∗(s)) extracted from optimal plans generated
by off-the-shelf planners from small instances [17, 10, 26, 6]. Since
computing h∗ is expensive, the training data is usually limited to
one or a few plans. The model lacks knowledge of the state space
outside these plans, and the learned heuristic may not generalise well
to unseen states.

It has been shown that a better strategy is to learn to rank states
instead [12, 8, 15]. These methods focus on learning the ranking
between states on the optimal path and their siblingswithout incurring
additional search costs. A ranking relation 
 is a total quasi-order
defined over a state space S with the following properties.

• Totality: ∀a, b ∈ S a
 b ∨ b
 a;
• Transitivity: ∀a, b, c ∈ S a
 b ∧ b
 c ⇒ a
 c.

Moreover, totality implies reflexivity, i.e., ∀a ∈ S a
 a. Given a
ranking relation 
 we define a≺ b ⇐⇒ (a
 b ∧ b 	
 a).

Hao et al. [15] introduced the optimal ranking relation for planning
where ties between multiple optimal plans are arbitrarily broken by
the data generation process. We relax the definition of an optimal
ranking to encode all optimal plans by making the ranking between
all siblings non-strict as follows:

Definition 2.1 (Optimal Ranking 
o). Given a planning task P and
an associated optimal plan π∗ and its trace Sπ∗ = [s∗0, s

∗
1, ..., s

∗
n], the

Algorithm 1: WL algorithm
Data: A graph G = 〈V,E,F,L〉, injective hash function,

and number of iterations L.
Result: Multiset of colours.

1 c0(v) ← F(v), ∀v ∈ V
2 for l = 1, . . . , L do for v ∈ V do
3 cl(v) ←

hash
(
cl−1(v),

⋃
ι∈ΣE

{{(cl−1(u), ι) | u ∈ Nι(v)}}
)

4 return
⋃

l=0,...,L{{cl(v) | v ∈ V}}

optimal ranking
o is a ranking relation where, for all s∗i ∈ Sπ∗ with
i ∈ [[n]], we have s∗i ≺o s∗i−1 (s∗i is strictly better than its parent) and,
∀s′ ∈ Ns∗i−1

\ Sπ∗ , s∗i 
o s′ (s∗i is better than its siblings).

Optimal ranking was used by Hao et al. [15] as the learning target
for a deep neural network (DNN) specialised in learning ranks. In
this paper, we adopt the current state-of-the-art and employ classical
machine learning techniques using features derived from the graph
representation of states [7] as opposed to DNNs. In the next section,
we introduce WL Features, which is the feature space used in our
experiments. It is important to note that our pruning methods are
general and can be applied to any feature space such as Description
Logic Features (DLFs) [21].

2.3 WL Features for Planning

Computing the WLF for a planning task has two components: en-
coding the planning task into a graph and extracting features of
the obtained graph. To introduce the graph encoding, we denote
a graph with categorical node features and edge labels by a tuple
G = 〈V,E,F,L〉. We have that V is a set of nodes, E ⊆ V ×V
a set of edges, F : V → ΣV the categorical node features, and
L : E → ΣE the edge labels, where ΣV and ΣE are finite sets
of symbols. The neighbourhood of a node u ∈ V in a graph
is defined by N(u) = {v ∈ V | 〈u, v〉 ∈ E}. The neighbourhood
of a node u ∈ V with respect to an edge label ι is defined by
Nι(u) = {v ∈ V | e = 〈u, v〉 ∈ E ∧ L(e) = ι}. Graphs with edge
features are viewed as ‘relational structures’ in other communities,
from which we can derive relational features with various sorts of
algorithms. It is not necessary to understand how to encode planning
tasks into graphs for this paper, except that it is possible to do so.

The second component of the WLF pipeline involves running the
1-Weisfeiler-Leman (WL) algorithm on graphs to generate vector
features. We begin by describing the underlying concept of the orig-
inal WL algorithm, which involves iteratively updating node colours
based on the colours of their neighbours, before describing how we
can use it to generate features. The original WL algorithm was de-
signed for graphs without edge labels, while we present an extension
which supports edge labels [2] in Algorithm 1. The algorithm’s input
is a graph with node features and edge labels alongside a hyperparam-
eterL determining howmany iterations to perform. The output of the
algorithm is a canonical form for the graph that is invariant to node
orderings. Line 1 initialises node graph colours as their categorical
node features. Lines 2 and 3 iteratively update the colour of each node
v in the graph by collecting all its neighbours and the corresponding
edge label (u, ι) into a multiset. This multiset is then hashed along-
side v’s current colour with an injective function to produce a new
refined colour. In practice, the injective hash function is built lazily,
where every time a new multiset is encountered, it is mapped to a
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new, unseen hash value. After L iterations, the multiset of all node
colours seen throughout the algorithm is returned.

The WL algorithm has been used to generate features for the WL
graph kernel [27]. Each node colour constitutes a feature, and the
value of a feature for a graph is the count of the number of nodes
that exhibit the colour. Then, for a fixed number of WL iterations,
given a set of coloursC known a priori, the WL algorithm can return
a fixed-sized feature vector of size |C| for every input graph. In a
learning for planning pipeline, we collect the colours C from a set
of training planning tasks, followed by using the colours to embed
arbitrary graphs (i.e. converted from either training or testing tasks)
into fixed-sized feature vectors from such colours. These steps are
formalised as follows:

1. We construct C from a given set of graph representations of
planning tasks G1, . . . ,Gm by running the WL algorithm with
the same hash function and number of iterations L on all of
them, and then taking the set union of all multiset outputs, i.e.
C =

⋃
i∈[[m]] WL(Gi).

2. Now suppose we have collected a set of colours and enumerated
them byC = {c1, . . . , c|C|}. Then given a graphG and its multi-
set outputM from theWL algorithm, we can define an embedding
of the graph into Euclidean space by the feature vector

[count(M, c1), . . . , count(M, c|C|)] ∈ R
|C|, (1)

where count(M, ci) is an integer which counts the occurrence of
the colour ci inM. We note importantly that any colours returned
in M that are not in C are defined as unseen colours and are
entirely ignored in the output.

We can view colours as features, i.e. functions that map planning
tasks to real values, with definition given by ci(P) = count(M, ci)
where M is the multiset output of WL on the graph encoding of P.

3 Ranking States from A� Search Trees
Recall that optimal ranking only relates states in the optimal trace
and their siblings; however, A� often expands a large search tree to
compute an optimal plan and all states not in the optimal plan nor
among its siblings are discarded. This also holds for other approaches
that learn rankings (e.g., [12]) and heuristics (e.g., [26, 17, 6, 7]).
Before we show how to derive additional ranking relationships by
leveraging the already generated A� search tree, we first define a
generalisation of optimal ranking called search space ranking and
denoted by 
s.

Definition 3.1 (Search Space Ranking). Given a planning taskP, the
search space ranking
s is the ranking relation over the state space S
such that, for all states s and s′ in S: s
s s′ if h∗(s) ≤ h∗(s′) and
s≺s s′ if h∗(s) < h∗(s′).

Different from optimal ranking, search space ranking is defined over
all states in a planning task and represents the ranking induced by
the optimal heuristic h∗. Note that computing search space ranking
explicitly can be costly since it requires solving multiple optimal
planning problems, one for each required h∗ value. Before we show
how to derive search space ranking relationships without explicitly
computing h∗ for states outside the optimal plan, we show that search
space ranking generalises optimal ranking in Prop. 3.2.

Proposition 3.2. For all states s and s′ in S, if s
o s′ then s
s s′

and if s≺o s′ then s≺s s′.

Proof. (i) If s
o s′, then there exists an optimal plan π∗ s.t. s ∈ Sπ∗

and s′ is a sibling of s. Therefore h∗(s) ≤ h∗(s′) and s
s s′. (ii) If
s≺o s′, then there exists an optimal plan π∗ s.t. either both s and s′

are in its trace Sπ∗ and s′ is an ancestor of s, or only s ∈ Sπ∗ , and
there exists s′′ ∈ Sπ∗ such that s′′ is an ancestor of s and a sibling
of s′ 	∈ Sπ∗ . In the first case, h∗(s) < h∗(s′) and s≺s s′. In the
second case, h∗(s) < h∗(s′′), and s′′ 
o s′ since s′ is a sibling of s′′
which by (i) implies h∗(s′′) ≤ h∗(s′). Therefore, h∗(s) < h∗(s′)
and s≺s s′.

Now we show how to derive pairs of states satisfying 
s and
≺s without explicitly computing h∗ for both states. We achieve this
by utilising admissible heuristics and the search tree computed by
A� to find an optimal plan resulting in more data at a negligible
computational cost. Consider a task P with an optimal plan π∗ with
trace Sπ∗ = [s∗0, s

∗
1, ..., s

∗
n]. Proposition 3.3 formalises a set of search

space rankings obtained through an admissible heuristic.

Proposition 3.3 (
s rankings from admissible heuristics). Let s∗ ∈
Sπ∗ and h be an admissible heuristic. Then, for all s ∈ S \ Sπ∗ , we
have that s∗ 
s s if h∗(s∗) ≤ h(s) and s∗ ≺s s if h∗(s∗) < h(s).

The proof is trivial since h(s) ≤ h∗(s) for all s ∈ S by the definition
of admissible heuristic. Notice that, not all pairs derived by Prop. 3.3
need to be represented directly because of transitivity. Formally, let
s∗i ∈ Sπ∗ be the state with largest h∗ value s.t. h∗(s∗i ) < h(s).
By Prop. 3.3, we have that s∗j 
s s for all j ∈ {i, . . . , n} since
h∗(s∗n) < h∗(s∗n−1) < . . . h∗(s∗i ). Due to transitivity, it suffices
to only explicitly represent s∗i 
s s and the other relationships will
follow from the rankings in the optimal plan.

In the remainder of this section, we show how to extract rankings
from a search tree T generated by A� when an optimal plan is found.
We denote by h the heuristic used to generate T and assume that
h is an admissible heuristic. The search tree T is a directed acyclic
graph where each node represents a state in the planning task, and
edges represent the actions taken to reach those states. The root of
the tree is the initial state s0. Each node in the tree has an f-value
f(s) = g(s) + h(s) where s is the corresponding state. Lastly, let
f∗(s) = g(s) + h∗(s) denote the optimal plan cost through s.

The ranking relationships defined in Prop. 3.3 relies only on the fact
that h is an admissible heuristic and does not leverage the knowledge
of the A� tree T . In the next proposition, we assume that T also
contains the ordering in which nodes were expanded. This can be
trivially done by adding a counter to the node data structure with
minimal impact on both computational time and memory usage. We
only consider the ordering of nodes that ended up in the closed list and
the last time they were expanded. We remove the node’s ordering if it
was reopened and ended up in the open list. These extra relationships
satisfying 
s and ≺s are defined in Prop. 3.4.

Proposition 3.4. Let s ∈ T \ Sπ∗ and s∗ ∈ Sπ∗ s.t. s was expanded
before s∗ in T . If h(s∗) ≤ h(s) then s∗ 
s s and, if h(s∗) < h(s)
then s∗ ≺s s.

Proof. Since s was expanded before s∗, we have that f(s) ≤ f(s∗).
Moreover, f∗(s) ≥ f∗(s∗) since s∗ ∈ Sπ∗ and s 	∈ Sπ∗ . Applying
the definition of the evaluation function f , we obtain g(s) + h(s) ≤
g(s∗)+h(s∗) and g(s)+h∗(s) ≥ g(s∗)+h∗(s∗), respectively. By
subtracting the former from the latter, we have

g(s∗)+h∗(s∗)−(g(s∗)+h(s∗)) ≤ g(s)+h∗(s)−(g(s) + h(s))

h∗(s∗)− h(s∗) ≤ h∗(s)− h(s)

h(s) + h∗(s∗)− h(s∗) ≤ h∗(s) (2)
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h=0

O=9 O=10

Figure 1. A� search tree with initial state s0 and goal state s6. The optimal
trace is coloured in green. The heuristic is shown on the upper left corner of

the corresponding node and the expansion order on the bottom left.

If h(s∗) ≤ h(s) (resp.<) then we can add (2) to it and obtain h(s∗)+
h(s) + h∗(s∗) − h(s∗) ≤ h∗(s) + h(s) (resp. <) which simplifies
to h∗(s∗) ≤ h∗(s) (resp. <). Therefore s∗ 
s s (s∗ ≺s s).

We conclude this section with an example of search space ranking
relationships obtained from Props. 3.3 and 3.4 on the A� search tree.

Example 3.5. Consider the A� search tree shown in Figure 1 for a
planning task with initial state s0, goal set {s6} and a unit cost. The
cost of the optimal plan is 6 and we assume an admissible heuristic
h was used to generate the search tree. The explicit optimal ranking
relationships (Definition 2.1), which are also search space ranking
relationships by Prop. 3.2, for our example are:

• On the optimal path: s6 ≺s s5 ≺s s4 ≺s s3 ≺s s2 ≺s s1 ≺s s0.
• Siblings along the optimal path: s1 
s t1,1.

All other optimal ranking relationships are implicitly derived by using
transitivity.

Since h∗(s2)=4, h∗(s3)=3, h∗(s4)=2, h∗(s5)=1, by Prop. 3.3,
we have: s2 
s{t1,1, t2,1, t2,2}, {s3, s4}≺s{t1,1, t2,1, t2,2},
s4 
s{t3,1, t4,1}, and s5 ≺s{t1,1, t2,1, t2,2, t3,1, t4,1} No-
tice that {s3, s4}≺s{t1,1, t2,1, t2,2} are redundant because
s4 ≺s s3 ≺s s2 
s{t1,1, t2,1, t2,2} by transitivity. Similarly,
s2 
s t1,1 is redundant because s2 ≺s s1 
s t1,1 as well as all
relationships derived for s5. Therefore, Prop. 3.3 adds 4 new
relationships to be explicitly represented s2 
s{t2,1, t2,2} and
s4 
s{t3,1, t4,1}.

The expansion ordering of the nodes in our example
is [s0, t1,1, s1, t2,2, t3,1, s2, s3, s4, s5, s6] and we can use
Prop. 3.4 to derive the following relationships: {s1, s2}
s t1,1,
{s3, . . . , s6}≺s{t1,1, t2,2}, s2
s t2,2, s3
s t3,1, and
{s4, s5, s6}≺s t3,1. Removing pairs obtained by transitivity
over the optimal ranking and Prop. 3.3 pairs, we have one new
relationship to be explicitly represented: s3 
s t3,1.

Thus, using space search ranking and utilising all data within the
A� search tree, we extracted 5 new explicit ranking relationships
more than optimal ranking. This nearly doubles the total explicit
relationships for the same problem: 7 for optimal ranking and 12 for
space search ranking. Considering explicit and implicit relationships
due to transitivity, these numbers are 27 for optimal ranking and 47
for space search ranking.

Note that the branching factor in our example is very small and
it equals 1 for all states except s0 and t1,1. The branching factor
in most problems of interest largely exceeds 1, resulting in a larger
A� search tree and substantially more ranking relationships. Indeed,
the number of explicit relationships is linearly correlated with the
size of the search tree. Therefore, although it is possible to obtain a
significantly larger dataset, we need to select a subset of the data to

train our models due to memory and time constraints, as well as to
avoid overfitting. In the next section, we formalise this problem and
introduce several methods to solve it.

4 Redundancy Pruning
To manage the substantial growth in both states and features, we
present methods to prune redundant data from the training set. We
formalise the concept of redundant features in Section 4.1 and present
both sound and unsound methods for feature pruning in Sections 4.2
and 4.3, respectively.

4.1 Redundant Features
We define redundant features as features that have the same evalua-
tions on a set of states. We then define dependent features as pairs of
features c1, c2 where the computation of c1 depends on the compu-
tation of c2.

Definition 4.1. Let C be a set of features and S a set of states. We
say that a feature c ∈ C is redundant with respect to S if there exists
another feature c′ ∈ C \ {c} such that c(s) = c′(s) for all states
s ∈ S.1 In this case we say that c is redundant with c′. A redundant
set of features is a set of features such that all features are redundant
with one another. A feature is unique if it is not redundant.

Definition 4.2. A set of features C is dependent if there exists a
pair of distinct features c1, c2 ∈ C where the computation of c1 can
provide us with the computation of c2 with no additional cost. Here,
we say that c1 is dependent on c2.

Semantically equivalent and hence redundant WLFs have been
empirically observed previously. For example, the original WLF for
planning paper [7, Fig. 7] presents a subset of WLFs collected for
the Blocks World domain all of which semantically compute “the
number of blocks correctly placed on the table and with the cor-
rect block above it”. Although redundant and dependent features are
not inherently problematic as they have no effect on expressiveness,
these features introduce computational inefficiencies. For instance,
a WLF computed at iteration l depends on a set of WLFs from it-
eration l − 1, thus deleting redundant features from iteration l − 1
provides no runtime benefit as they remain necessary for computing
features in iteration l. Similarly, DLFs for planning [21] are also fea-
tures constructed iteratively based on a parameter l denoting feature
complexity. However, as we will discuss next, premature pruning of
features at an iteration l−1may lead to the loss of features necessary
for the computation of more refined features at iteration l.

4.2 Unsound Feature Pruning
Issues arising from redundant and dependent features have been iden-
tified in earlier works concerning rule generation for generalised plan-
ning from DLF. An explicit feature pruning method for DLFs was
introduced and implemented by Bonet et al. [4]. LetCl denote the set
of features collected at iteration l. Bonet et al. [4] prune features from
Cl that are redundant in

⋃l
i=1 C

i with respect to the set of training
states in a learning pipeline. In the case that two features ca, cb ∈ Cl,
ca 	= cb are redundant, we randomly discard one and keep the other.
We denote this pruning method as i-bfg19, where the i- prefix

1 For all remaining definitions and mentions of ‘redundant’, we assume a fixed
set of states for the definition to hold.
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emphasises that pruning is done iteratively during feature construc-
tion.

An issue with i-bfg19 is its greedy nature which may preemp-
tively prune features that could contribute to more complex features
that are not redundant. For instance, it is possible that two features
ca and cb generated at or before an iteration l are redundant such
that unique features c′a and c′b exist in the subsequent iteration l + 1
which depend on ca and cb, respectively. In preliminary experiments,
we observed that i-bfg19 pruning results in no WLFs to be gener-
ated after just l = 2 iterations despite the existence of more unique
features for l ≥ 3.

An orthogonal feature pruning approach involves the frequency
with which a feature is observed with a non-zero value. Although
there exists some body of work on both offline and online feature
selection [28] from classical machine learning, such methods are
limited to the training label context.2 However, WLFs and DLFs are
used in a variety of different pipelines which limits the applicability of
such methods. A naive approach for pruning features is to count how
often a colour/formula in WLF/DLF is encountered by summing the
feature vectors across the training data, and then discarding features
based on some threshold. We can perform this iteratively since any
feature that depends on a feature pruned this way will have a strictly
lower count. We denote this pruning method as i-freq. Note that
there is no guarantee that the infrequent features pruned directly or
indirectly are redundant.

4.3 Sound Feature Pruning
To address the issue of premature pruning, we introduce the concept
of sound feature pruning in the context of redundant and dependent
features as follows.

Definition 4.3. Pruning a feature c from a set of features C is sound
if c is redundant and no other feature in C is dependent on c.

We next introduceMaxFeaturePrune as the problem ofmaximis-
ing the number of features pruned inC while maintaining soundness
and introduce aMaxSAT encoding for solving it. IndeedMaxSAT is a
reasonable approach as we show that MaxFeaturePrune is NP-hard
via reduction from the minimum cardinality hitting set problem [11,
p. 222].

Theorem 4.4. MaxFeaturePrune is NP-complete.

Proof. Membership follows from the upcoming MaxSAT encoding.
For hardness, we reduce from the minimum cardinality hitting set
(MCHS) problem. Let {S1, . . . , Sn} be a collection of sets. MCHS
asks to find a subset S ⊆ U :=

⋃
i∈[[n]] Si such that |S ∩ Si| ≥ 1 for

all i ∈ [[n]] and |S| is minimal over all such subsets. To encodeMCHS
in MaxFeaturePrune, first let u1, . . . , um be an enumeration of U .
We then introduce a set of features C = C ∪ ⋃

i∈[[n]] Di where
C = {c1, . . . , cm} and Di = {dj,i | uj ∈ Si}. We enforce that for
C and each of theDi, are redundant sets, meaning that features within
each set are redundant with one another. Furthermore, we have that
the dj,i are dependent on the cj . Figure 2 illustrates the reduction.

To see that this is a valid reduction, we note that we want to keep
only one dj,i from eachDi and minimise the number of kept features
in C to maximise the number of pruned features from the Di sets.
Given that no features depend on the dj,i it is indeed optimal to only
keep one dj,i from each Di. Next, the dependency of the dj,i on the
2 Our iterative, dependent feature generation setup is a special case of online
feature selection.

S1 S2 S3 S4

u1 u2 u3 u4 u5 u6

c1 c2 c3 c4 c5 c6

d1,1 d2,1 d2,2 d3,2 d4,3 d5,3 d5,4 d6,4

Figure 2. Reduction from a MCHS problem (top) to MaxFeaturePrune
(bottom). Dashed rectangles indicate sets of redundant features and edges

feature dependencies.

cj implies that we need to keep the cj that correspond to the kept
dj,i. Thus all that remains is to maximise the number of pruned cj in
MaxFeaturePrune or equivalently minimise the number of kept cj .
This is equivalent to the MCHS problem as the kept cj correspond to
the elements in a MCHS S, with the dj,i marking out each of the hit
Si subsets.

We now introduce the msat pruning approach, which solves
MaxFeaturePrune by encoding it as a partially weighted MaxSAT
encoding. A partially weighted MaxSAT problem consists of a set of
Boolean variables, a set of positively weighted soft constraints and a
set of hard constraints. The objective is to find a variable assignment
satisfying all hard clauses and maximising the sum of the weights of
the satisfied soft clauses.

To encode MaxFeaturePrune, we introduce a set of Boolean
variables xc1 , . . . , xc|C| where xci is true if we decide to prune the
feature ci and false otherwise. The soft clauses we introduce are
simply the singleton clauses of the variables for all c ∈ C, each with
a weight of 1. This represents our goal of maximising the number of
pruned features.

Next, we note that a feature setC can be partitioned into redundant
sets C1, . . . ,Cp (some of which are singletons of a unique feature).
The set of hard constraints we introduce involve (1) ensuring that
at least one feature is kept from each redundant set with the clause∨

c∈Ci
xc for all i ∈ [[p]], and (2) ensuring that if a feature is not

pruned, then all the features it depends on are also not pruned, noted
by the clause ¬xc′ ∨ xc for all c, c′ ∈ C where c′ depends on c.

We observed in our experiments that solving this MaxSAT prob-
lem takes a matter of seconds and it is not a bottleneck. Furthermore,
compared to iterative, unsound pruning methods, msat has the dis-
advantage that it must generate all possible features a priori before
any pruning is performed. However, this is an unavoidable tradeoff
in order to ensure soundness which iterative methods cannot guaran-
tee. In light of this tradeoff, we also introduce two unsound pruning
methods based on the MaxSAT encoding: i-msat which solves
the MaxSAT problem for each iteration; and i-mf which applies
frequency pruning after solving the MaxSAT for the whole dataset.

5 Experiments
We use the domains and training and testing task splits from the IPC-
23 Learning Track [23]. Each domain consists of 99 training tasks and
90 testing tasks divided into “easy”, “medium” and “hard” difficulty.
We ran A� search with the LM-cut heuristic [16] to generate optimal
plans and search trees for each training taskwith a 30minutes timeout.
States from the search tree are collected iteratively during training:
we start with the states in the optimal trace and, at each iteration, add
the siblings in the search tree of all states collected so far. We stop
collecting states when the total data size (number of collected states
× number of features) reaches one billion (this threshold was empiri-
cally determined). We apply feature pruning after collecting the data.
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Figure 3. (a)–(d) Percentage of features pruned by different methods w.r.t
no feature pruning, for optimal ranking (first row) and search space ranking

(second row), for WL-2 (left column) and WL-4 (right column).

Our experimental setup uses the Instance Learning Graph (ILG) rep-
resentation of planning tasks [7] combined with the WLF described
in Section 2.3 for feature computation, with 2 (WL-2) and 4 iterations
(WL-4). For learning both optimal and search-space rankings, we ex-
periment with two types ofmodels: the Rank-based LPmodel (LP) [5]
and the RankSVMmodel (SVM) [12]. We use a 35 GBmemory limit
for all training scripts. Similarly to Hao et al. [15], testing tasks are
solved using GBFS and the learned ranking functions. We follow the
IPC 2023 learning track testing configurations, which use a 30-minute
timeout and 8GB cutoff for each task. For i-freq and i-mf, we
prune the features that appear in 1% or less of the total number of
collected states. The source code and dataset for all the experiments
can be found at [14]. For all our results, we abbreviate the domains
as follows: BW (blocksworld), CS (childsnack), FL (floortile), FR
(ferry), MI (miconic), RO (rovers), SA (satellite), SO (sokoban), SP
(spanner) and TP (transport). Table 1 summarises the total coverage
of various configurations on the experimented benchmarks and next
we address questions of interest from our empirical analysis.

How effective is feature pruning? Fig. 3 (a)–(d) show the per-
centage of features pruned relative to no feature pruning for optimal
ranking and search space ranking and WLFs using 2 and 4 iterations.
The number of features pruned by the sound feature pruning method,
namely msat, ranges from 4.8% (search space ranking, WL-2, satel-
lite) to 95.0% (optimal ranking, WL-4, sokoban). As this is a sound
method, it reveals for the first time the extent of redundancy generated
by WLFs for planning and provides insight into why WL-4 features
may not improve planning performance. The unsound feature prun-
ing methods are able to prune even more features, with the minimum
being 14.58% (i-bfg19, search space ranking,WL-2, blocksworld)
to 99.9% (i-mf, search space rankings, WL-4, satellite). Moreover,
in several domains, the unsound approaches can prune more than
90% of the features. ComparingWL-2 andWL-4, we observe that all
pruning methods are more effective in WL-4 due to the excess of re-
dundant features generated by WL-4. Besides being effective, sound
feature pruning also helps learning better rankings as evidenced by the
planning performance (Tab. 1). In all experiment settings, the msat

Figure 4. Increase in the number of non-zero entries in the training data
matrix for different domains for Search Space ranking w.r.t. optimal ranking

for different values of WL iterations.

feature pruning method has improved coverage compared to no fea-
ture pruning. However, for unsound pruning methods, the effect on
coverage is domain-dependent. For example, unsound feature pruning
methods tend to improve the coverage of floortile when search space
ranking is used. However, the coverage of spanner is lower under
the same setting. The performance decrease from unsound pruning
is more evident on WL-4, suggesting that these methods are overly
aggressive, resulting in the removal of too many features that may
contain crucial information.

How much more data can search space ranking extract? Fig. 4
shows the increase in data provided by search space ranking relative
to optimal ranking for the various feature pruning methods and num-
bers of WL iterations. Given the sparsity of our data, this increase is
quantified as the increase in non-zero values within the matrix repre-
senting the training data. The most significant increase in data is seen
in WL-4. The mean change across feature pruning methods ranges
from 80% for miconic to 60461% for floortile. The overall average
for all WL-2 approaches is a 8570% increase in data. Search space
ranking can also extract more data than optimal ranking for WL-4
but in smaller average quantities of 8192% increase. The reason for
this decrease in additional data is due to our fixed matrix size of one
billion, which combined with the much larger feature space gener-
ated by WL-4 results in fewer states being selected. Regardless of the
model (LP or SVM) or the number ofWL iterations (WL-2 orWL-4),
by leveraging the A� search tree data, our search space ranking ap-
proach is able to surpass the current state-of-the-art in total coverage,
namely optimal ranking without feature pruning. Moreover, search
space ranking leads to a drop in the ratio of unseen colours during
testing. Specifically, with optimal ranking, the average number of col-
ors unseen during training that were observed during testing accounts
for 45.66% (WL-2) and 42.75% (WL-4) of the latter, while these
ratios drop to 31.30% and 38.93% when using state space ranking.

6 Related Work
With respect to feature pruning, Kuzelka and Zelezný [18] introduced
“tree-like” relational features. These features can be viewed as more
refined WLFs and are obtained by examining subsets of neighbours
in Line 3 of the WL algorithm (Alg. 1). As a result, they observed
a greater increase in tree-like features and introduced pruning algo-
rithmswith a stronger notion of redundancy (Lavrac et al. 19; Kuzelka
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WL-2 WL-4
model tr. space feature pr. Bw Cs Fl Fr Mi Ro Sa So Sp Tp Σ Bw Cs Fl Fr Mi Ro Sa So Sp Tp Σ

LP

Opt.rank

none 73 13 2 76 79 42 51 32 71 40 479 83 13 2 76 80 39 52 28 70 39 482
msat 77 13 2 76 78 42 51 33 72 41 485 83 13 2 75 71 41 54 33 70 40 482
i-bfg-19 75 14 2 75 80 42 50 31 70 43 482 71 19 2 74 76 42 48 33 71 44 480
i-msat 73 14 2 72 80 42 45 31 71 43 473 72 18 2 73 81 42 48 34 71 42 483
i-freq 72 13 2 79 80 40 37 34 70 39 466 78 13 2 77 76 41 42 30 64 39 462
i-mf 74 13 2 73 79 41 50 34 71 41 478 60 17 2 74 76 41 54 30 72 42 468

Sea. Rank

none 80 30 4 75 79 41 47 31 71 38 496 72 58 10 75 74 42 52 29 70 41 523
msat 80 41 3 76 80 42 45 32 69 36 504 80 59 10 74 68 42 54 33 70 41 531
i-bfg-19 76 24 4 75 79 42 45 32 67 40 484 55 53 16 76 76 43 46 35 33 39 472
i-msat 73 29 4 73 80 42 42 31 67 43 484 77 13 15 78 81 42 48 33 37 42 466
i-freq 75 22 6 74 80 40 41 33 68 35 474 48 56 22 49 75 41 45 31 56 37 460
i-mf 73 20 5 76 80 39 39 27 64 39 462 52 34 6 78 76 40 40 32 70 42 470

SVM

Opt.rank

none 73 31 2 74 74 39 39 29 67 37 465 75 28 2 71 74 37 46 23 66 38 460
msat 77 32 2 74 74 39 39 30 68 35 470 74 32 4 71 74 40 48 28 66 39 476
i-bfg-19 74 32 2 65 74 39 36 30 67 40 459 62 31 2 70 74 41 43 33 67 39 462
i-msat 78 41 2 67 74 39 36 30 60 39 466 64 31 2 70 74 42 47 32 67 37 466
i-freq 79 30 2 74 74 39 37 31 69 35 470 67 27 4 71 74 40 35 29 48 36 431
i-mf 74 28 2 68 74 39 39 30 61 38 453 73 26 2 70 74 40 40 33 67 36 461

Sea. Rank

none 72 50 5 70 74 39 40 31 57 34 472 78 31 2 69 73 37 41 26 66 38 461
msat 70 51 3 72 73 39 42 31 59 34 474 75 32 5 70 74 40 45 31 65 40 477
i-bfg-19 73 54 4 68 74 39 36 31 46 41 466 64 30 2 71 74 42 44 32 55 35 449
i-msat 69 53 4 68 74 39 36 31 45 39 458 68 27 2 72 75 41 44 32 60 37 458
i-freq 64 53 4 72 74 39 33 31 30 34 434 41 54 3 71 74 41 33 27 63 33 440
i-mf 67 36 3 71 75 38 36 28 30 40 424 50 26 2 68 75 40 40 31 69 34 435

Table 1. Coverage of WL configurations using various feature pruning approaches. The best coverage in each column is indicated by the cell colouring
intensity and the best one is in bold.

and Zelezný 18, Definition 11) but restricted to the context of super-
vised inductive logic programming. Our work differs by focusing on
feature pruning methods that are agnostic to the downstream learning
task while emphasising the soundness and efficiency for planning.

The concept of using an admissible heuristic to help learning h∗

is also presented in Núñez-Molina et al. [22]. They model heuristic
learning as fitting a truncated Gaussian distribution, with the admis-
sible heuristic as the lower bound and the cost of suboptimal plans as
upper bounds. However, the fundamental issue of regression-based
methods remains – the model imposes value bounds on states. In con-
trast, ranking-based approaches such as optimal ranking and search
space ranking have shown that specifying a relative ordering between
states is sufficient and results in better learning outcomes.

Regarding using states outside optimal plans and their siblings for
learning, the closest work to ours is Drexler et al. [9] where Breadth-
First Search is employed to expand the full state space. This data gen-
eration method is effective only for small problems as acknowledged
by the authors while our approach scales to large training problems.
Other approaches generate additional data by creating new problems
based on the current ones through backwards random walks from the
goal (e.g., [1, 20, 3]) differing in their stopping criteria and sampling
strategies. These approaches are complementary to ours and are typi-
cally employed when no training set is available. Given a training set
of problems that are solved optimally with A�, our approach provides
additional data at minimal cost while sampling methods incur the cost
of finding and solving interesting problems.

7 Conclusion and Future Work
In this paper, we proposed a novel pairwise ranking method to signif-
icantly expand the scope of training data. Our approach extracted an
order of magnitude more training examples from an A� search tree,
which were then used to learn a state ranking with features generated
by the WL algorithm. However, the number of features generally in-

creases with the problem size and the number of WL-iterations. To
address this challenge, we introduced and evaluated both sound and
unsound feature pruningmethods. Experimental results demonstrated
that sound pruning methods consistently improved performance in
learning-based search and planning tasks.

Our experiments used the LM-cut heuristic. In the future, it would
be interesting to study the impact of different admissible heuristics on
the generation of useful ranking relationships in the various domains.
Moreover, consistent heuristics allow extracting further relationships,
beyond those afforded by Proposition 3.4.

Another future work avenue is the exploration of state pruning.
This paper focuses exclusively on pruning features. As we introduce
an exponential increase in states within the training set, it remains
uncertain whether all states contribute positively to performance.
Investigating the impact of individual additional states and pruning
redundant oneswill freememory for addingmoremeaningful samples
into the training set, hence further improving the learning outcomes.
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