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Abstract. This paper presents the demonstrator developed in the
TUPLES European Union research project for assisting human oper-
ators at Airbus to plan Beluga cargo ground logistic operations. The
demonstrator features techniques providing robust, explainable, and
safe decisions, which all contribute to making our decision-support
system trusted by the operators. We have also worked on various
planning methods to scale up to the size of the real industrial prob-
lem, including hybrid machine learning and symbolic algorithms. We
demonstrate the software that was tested by Airbus operators during
a user study in Finkenwerder’s production site in May 2025.

1 Introduction

As AI decision-making technologies become sufficiently mature
for solving real use cases, there is a growing need from users to
make these technologies trustworthy. The TUPLES Horizon Europe
project [1] especially developed novel methods and tools for four
important aspects of decision-making trustworthiness: scalability to
real-size and diverse problems, robustness to uncertainties impact-
ing the execution of the decision plans, explainability and safety
of the optimized decisions. Those technologies have been demon-
strated and evaluated on different real use cases provided by var-
ious European industrial partners, from aircraft manufacturing to
sport squad management via public energy and waste management.
Among them, Airbus provided a logistic planning use case consisting
in optimizing the on-site ground management of parts transported by
Beluga aircraft up to their delivery to the factory.

Assembling complex structures such as commercial aircraft relies
on a network of production plants located in different sites. Assembly
parts of growing complexity and size are built and transferred from
plants to plants until reaching a final plant where the final product
is fully assembled. For a manufacturer like Airbus, parts transit via
trucks, sea vessels and so-called Beluga aircraft (see Figure 1). They
are mounted on jigs that hold frames—such as the one supporting
the wings in Figure 1.a—which slide from the interior of the Beluga
onto a movable rack, as shown in the picture. Jigs must return to their
original site after the part they hold has been delivered to the deliv-
ery site. Once arrived at the delivery site, the jigs must be unloaded
and placed on intermediate storage racks. They are then waiting in
the racks to be sent afterwards to the production plant when the lat-
ter is ready to accept them for production. When a part is picked
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up from the rack system and sent to the plant, the jig that held that
part must return to the rack system and wait to be returned to its
original production site by some outgoing Beluga flight. Two kinds
of decision-making problems are involved: first, optimizing the flow
of jigs and parts across the sites in order to respect the production
calendar; second, planning the ground operations of loading and un-
loading Beluga aircraft and managing the storage of the parts in the
rack system. This paper focuses on the second problem, i.e. planning
of Beluga’s ground operations, which is a complex dynamic storage
management problem specific to Airbus operations.

Planning for the logistic operations of loading, unloading and stor-
ing jigs in the rack system is especially complex because the jigs
must be stored in the racks in such a way as to be delivered to the
factory (for production) or to the Beluga (for returning empty jigs
to their original site) in the right order. If the order in a given rack
is different from the delivery order on factory or Beluga side, then
a costly 30 minutes swap task is required, which consists in 3 ac-
tions: (1) picking up a part at either end of the rack, (2) storing it
in another rack, and (3) delivering the part which is now at the end
of the rack to the factory or the Beluga. As the rack system occu-
pation increases, the risk of requiring swap tasks, or even of block-
ing the system, significantly increases. Replanning the system upon
new Beluga flight arrival or change in the production schedule is cur-
rently manually done by experienced engineers, and can take up to
2 hours in complex situations. In the context of the TUPLES Eu-
ropean Union research project [1], we developed a prototype of an
explainable automated planning system, which helps the engineers
plan the grounding logistic operations of the Beluga, with a particu-
lar focus on interactively explaining reasons for problem infeasibility
and trade-offs between conflicting objectives. This planning system
has been used for a user study in May 2025 at Airbus’ Hamburg pro-
duction site with real planning engineers of the rack system, using
the software we demonstrate in this paper.

2 Planning problem

Aircraft parts are held on jigs which can slide and be stored on the
racks. Each jig has a type, defined by its loaded and empty size, and
by the specific aircraft parts (e.g. wings) it is designed to hold. As an
example, a wing jig can be seen in Figure 1.a, which is holding two
wings in staggered rows. The jig is sliding on a mobile rack inside the
hangar as it is unloaded from (or loaded to) the Beluga. When exiting
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(a) Unloading/Loading of a wing from/to a Beluga aircraft. The part
stands on a jig which goes itself on a mobile rack to transfer the

unloaded/loaded part to/from the outside rack system.

(b) Beluga hangar and outside rack system (top left corner of the
picture) where aircraft jigs and their held parts are temporarily stored

before being sent to the factory.

Figure 1. Transportation and storage of aircraft parts with Beluga aircraft. Pictures are under Airbus copyright.

the Beluga hangar, the jig is loaded onto a trailer, which transports it
between the hangar and the fixed racks outside. The jig is then stored
on the rack system, shown in the top-left corner of Figure 1.b. When
the aircraft parts are sent to the production lines, they transit through
craning hangars where cranes remove the parts from the jigs. The
parts are then sent to production and the jigs return empty to the rack
system. Empty jigs must then return to some outgoing Beluga flights
in order to refill the set of jigs needed to hold future parts produced
at their original production site. We only know the types of the jigs
that must be returned to their original site and the number of jigs of
each type that must be returned. The racks can contain several jigs in
sequence, but only the jigs which are at the edges of the racks, either
factory side or Beluga side, can be pulled out from the racks. This
might require swapping jigs located at the rack edges to other racks
in order to free the path to jigs which are strictly inside the racks (i.e.
not at their edges).

When the Beluga lands on the production site, two high-level tasks
must be performed:

• unloading the parts (held on jigs) from the Beluga and storing
them in the rack system;

• unstoring empty jigs from the rack system and loading them into
the Beluga.

Loading parts for a given flight can be done in parallel with unload-
ing the preceding flight by using two mobile racks which can be oper-
ated in parallel inside the Beluga hangar. Between two Beluga flights,
three high-level tasks must be considered, possibly interleaved:

• unstoring parts held on jigs from the rack system and sending them
to the production lines via the craning hangars;

• sending back empty jigs from the craning hangars to the rack sys-
tem;

• optionally swapping the jigs which are at the edges of the racks
(either factory side or Beluga side) from one rack to another, in
order to free the path to jigs which are strictly inside the racks.

A planning problem consists in deciding of the sequence of such
actions for a given sequence of Beluga flights and a given order of
parts to be sent to the factory. The goal of the problem is to de-
liver all the parts to the factory in the right order, and to load back
empty jigs of the correct types onto Beluga aircraft in the right or-
der. We can easily see that the problem is NP-hard by reduction from
bin-packing, and therefore it is especially difficult to solve even, in
practice, for small-size instances with less than 10 jigs and 5 racks.
Therefore, we split it into sequential planning sub-problems consist-
ing in handling one Beluga flight at a time. The Beluga flight of each

subproblem must be unloaded and loaded, and the Beluga-side and
factory-side actions to move the jigs and parts between the racks and
the Beluga or (where possible) factory hangars must be also planned
within the same time frame.

While we are focusing on finding a satisfiable plan, users are actu-
ally interested in exploring various solution plans and in comparing
them according to different metrics: length of the plan; number of
free racks in the final state; number of swap actions, where a swap is
defined as the sequence of picking up a jig from a rack and putting
it back on another rack. Apart from plan length, users prefer reason-
ing with threshold constraints (e.g. “fewer than 2 swaps”) which we
add to the problem’s goal. As a consequence, finding a plan which
satisfies the goal condition amounts to finding a plan which satisfies
trade-off constraints between different metrics.

3 Demonstrated technologies

Our demonstrator software has been developed for the TUPLES
project [1] which aims at implementing novel research methods and
tools for trustworthy decision-support systems. As shown in Figure
3, the demonstrator features algorithms developed in TUPLES that
contribute to 3 major areas in decision-making trustworthiness: scal-
ability, explainability and safety. Please note that robustness has been
also investigated for this use case, but probabilistic methods are cur-
rently not sufficiently scalable to be part of this demonstrator involv-
ing real users on real problems of our industrial partner. Figure 3
depicts the architecture of the demonstrator software which can be
globally split in 4 user interaction phases when read from left to right:

1. split the x-flights problem, x > 0, into x problems of 1 flight
each, and solve it sequentially (otherwise it would be too large to
be solved at once);

2. either solve the problem manually or automatically with different
AI planning and machine learning algorithms;

3. interactively explain the decisions to the user, focusing on infeasi-
bility restoration and conflicting trade-offs exploration;

4. inspect the resulting plan and test its optimality gap, especially for
manual plans and deep learning action policies.

We now describe the main trustworthiness methods developed in
the TUPLES project that are part of the demonstrator.

Scalability. The problem being especially hard to solve, we
have implemented different model-based and data-driven algo-
rithms, ranging from a domain-specific heuristic algorithm (SSBP)
to domain-independent hierarchical planning (Aries), via generalised
policy learning (ASNets) and heuristic search guided by a learnt

R. Eifler et al. / An Operator-Centric Trustable Decision-Making Tool for Planning Ground Logistic Operations of Beluga Aircraft5128



Figure 2. Conflict resolution: cannot produce part 12 from plant pl0 while maintaining trailer FT1 and imposing no swap and 1 empty rack
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Figure 3. Architecture of the demonstrator software

heuristic (WL-GOOSE). In more detail, the Subgoal Sampling Bel-
uga Planner (SSBP) is an efficient but incomplete domain-specific
heuristic approach that performs a number of length-bounded tri-
als aiming at reaching the goal from the initial state. Each trial re-
peatedly identifies a useful subgoal to achieve next in order to make
progress towards the overall goal (e.g. delivering the next jig to the
factory, getting a jig onto a trailer etc), and samples an action to be
executed next among those likely to lead to achieving this subgoal.
On the other hand, Aries models the problem as a scheduling prob-
lem with optional actions using the unified-planning library [9], and
solves it with the Aries automated planner [2]. Internally, the plan-
ning problem is converted into a series of CSPs with increasing num-
bers of swaps, each of which is solved with a specialized hybrid CP-
SAT solver. Moving to data-driven approaches, Action Schema Net-
works (ASNets) is a neural network architecture that exploits the re-
lational structure of a PDDL domain – here the Beluga. It uses imita-
tion learning to produce a generalised reactive policy that can quickly
solve much larger instances from the domain than those it trained on
[13, 14]. Finally, WL-GOOSE learns heuristics and state rankings
to guide greedy best-first search [3]. WL-GOOSE applies statistical
machine learning techniques to relational Weisfeiler-Leman features
generated from a graph representation of the lifted planning prob-
lem. Similarly to ASNets, the learnt search guidance applies to much
larger problems than trained on.

Explainability. Users need to trust the decisions provided by the
algorithms in order to avoid blocking the system and consequently
the production, which could cost millions of euros in delay penalties.
They especially want to explore different trade-offs as threshold con-
straints on rack emptiness and number of swaps, and maintenance
constraints on trailers and racks which prevent their use. If there is
no plan satisfying those constraints, users would like to understand
how to relax thresholds or to delay some production parts or rack
maintenance in order to make the plan feasible (see Figure 2).

To provide insights into the dependencies between the different

constraints we provide explanations based on minimal conflicts given
by minimal unsolvable goal subsets [4]. The minimal conflicts lead
explanations such as “It is not possible to use fewer than two swaps
while keeping one rack empty and one trailer is in maintenance.”.
To compute the minimal conflicts we consider different approaches.
QUICKXPLAIN [7] using the SSBP heuristic to test for solvability,
provides a single minimal conflict quickly. MARCO [8] relying on
Aries [2] as solvability check focuses on enumerating all conflicts.

Safety. Due to the complexity of our problem, none of the algo-
rithms can solve it optimally in reasonable time. Therefore, given a
policy π that solves the problem, we apply policy testing methods
which can evaluate the optimality gap of π on a subset of states, i.e.,
provide lower bounds for how much π is suboptimal. Action policy
testing as in [11, 5, 6] is organized as a two-step procedure. First, it
involves the generation of a pool of test states t, which can be user-
provided or obtained using random walks from the initial state of the
problem. Second, a test oracle attempts to identify that π is subop-
timal on these t, leveraging (and combining) different methods such
as metamorphic testing [5] or the plan improvement tool Aras [10].

4 Conclusion

This paper presented an overview of the trustworthy planning sys-
tem that was developed in the TUPLES European Union project for
planning Beluga ground logistic planning operations at Airbus. The
demonstrator, which was partly tested by operators in a user study in
Airbus’ Finkenwerder production site in May 2025, especially fea-
tures hybrid machine learning and symbolic planning algorithms, ex-
plainable conflict resolution and policy testing methods developed in
TUPLES. The users appreciated the ability of the tool to provide
valuable and explainable decision advice in critical time-constrained
situations, reducing their stress while keeping them in full control of
the final solution. In the future, we plan to refine the problem repre-
sentativeness and also to include probabilistic, explainable planning
algorithms that we have investigated in TUPLES to handle proba-
bilistic production demands [12]. However, they require significant
additional engineering work on the demonstrator to handle and inter-
actively simulate probabilistic events and disruptions.
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