
Heuristic Search for Multi-Objective Probabilistic Planning

Dillon Chen,1 Felipe Trevizan,1 Sylvie Thiébaux1,2

1School of Computing, The Australian National University
2LAAS-CNRS, ANITI, Université de Toulouse

{Dillon.Chen, Felipe.Trevizan, Sylvie.Thiebaux}@anu.edu.au

AAAI 2023

1 / 25

▶ stochastic shortest path problems
(SSPs) are the defacto model for
planning under uncertainty
▶ compute a policy which maps states

to actions
▶ want optimal policy minimising the

expected cost to reach the goal from
an initial state

s0

s1

g

a2

a1

0.7

0.3

An SSP with a stochastic action a1.

▶ heuristic search powerful for implicitly
represented SSPs with large state
spaces

▶ multi-objective stochastic shortest
path problems (MOSSPs) generalise
SSPs by exhibiting multiple objectives
▶ aim to compute a set of

non-dominated vector-valued policies
with tradeoffs between objectives

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

orange+red=non-dominated vectors

▶ no existing heuristic search algorithms
for MOSSPs

▶ algorithms that exist for MOMDPs do
not carry over to MOSSPs: MOSSPs
require additional assumptions

2 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

3 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

4 / 25

Definition (MOSSPs)
An MOSSP is a tuple P = (S, A, s0, G)
▶ S is a set of states
▶ A is a set of actions a which

▶ maps certain states to a probability distribution of states, and
▶ has an associated cost vector C⃗(a) = [c1, . . . , cn] ∈ Rn

≥0

▶ s0 ∈ S is an initial state, G ⊆ S is a set of goal states

Informally,
A solution is a compact representation of a set of non-dominated

vector-valued policies.

u⃗ dominates v⃗ denoted u⃗ ⪯ v⃗ iff u⃗[i] ≤ v⃗ [i], i = 1, . . . , n

∗Full definition: too many technical details and sub-definitions to fit into the talk

5 / 25

MO Bellman Backup
▶ fundamental equations for solving (MO)SSPs and (MO)MDPs
▶ states assigned Q and V values; each a finite set of vectors ∈ P<ω(Rn

≥0)
▶ Q : S × A→ P<ω(Rn

≥0) ≃ MO expected cost to goal when executing a at s
▶ V : S → P<ω(Rn

≥0) ≃ MO expected cost to goal from s → minimum of Q values

▶ For s ∈ S \ G :

Vt+1(s) = CCS
(⋃

a∈A

Qt+1(s, a)
)

Qt+1(s, a) = {C⃗(a)} ⊕
(⊕

s′∈S

P(s ′|s, a)Vt(s ′)
)

▶ For g ∈ G :

Vt+1(g) = {0⃗}

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

red: CCS;
orange+red: PCS

▶ CCS is the convex hull of a Pareto coverage set ≃ MO generalisation of min
▶ V ⊕ U = {u⃗ + v⃗ | u⃗ ∈ U, v⃗ ∈ V} is setwise sum of vectors
▶

⊕
generalises ⊕ to several sets

▶ lim
t→∞

Vt = V∗ [White, 1982; Barrett and Narayanan, 2008]

6 / 25

MO Value Iteration

Algorithm: MOVI
Data: MOSSP problem P = (S, A, s0, G),

initial values V(s) for each state s
(default to V(s) = {0⃗}), and
consistency threshold ε.

1 while maxs∈S res(s) < ε do
2 for s ∈ S do
3 if s ∈ G then Vnew(s)← {⃗0} ;
4 else Vnew(s)←

MOBellmanBackup(s) ;
5 res(s)← D(V, Vnew)
6 V← Vnew

7 return V

same as (single-objective) Value Iteration
except

1. MO backups instead of SO backups
2. MO residual defined using Hausdorff metric

(for finite sets of points):

D(U, V) = max
{

max
u⃗∈U

min
v⃗∈V

d(u⃗, v⃗),

max
u⃗∈V

min
v⃗∈U

d(u⃗, v⃗)
}

7 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

8 / 25

Assumptions for convergence of MOVI for MOSSPs

Consider the MOSSP

s0s1 ga2
a1

ag

MOSSP with action costs C⃗(a1) = [1, 0], C⃗(a2) = [1, 0], C⃗(ag) = [0, 1].

▶ π1 : S → A, s0 7→ ag is a proper policy
▶ π2 : S → A, s0 7→ a1, s1 7→ a2 is an improper policy
▶ MOVI does not detect this; V(s0) = {[∞, 0], [0, 1]} in the limit
▶ VI able to detect and prune improper SSP policies which have ∞ cost

9 / 25

Assumptions for convergence of MOVI for MOSSPs
Strong improper policy assumption

▶ reachability assumption
▶ ∀s ∈ S, ∃ proper policy at s

▶ all improper policies cost ∞⃗

▶ MOVI + strong assumption is sound and complete
▶ implies cycle costs have nonzero components (not

easy to guarantee)
▶ one method: all action costs have nonzero

components
▶ cannot model independent costs
▶ e.g. navigation domain: load, unload

consumes 0 fuel, 1 time

Weak improper policy assumption
▶ reachability assumption
▶ exists a bound b⃗ s.t. ∀s ∈ S

▶ for all proper π, V π(s) ⪯ b⃗
▶ for all improper π, V π(s) ̸⪯ b⃗

▶ u⃗ ⪯ v⃗ iff u⃗[i] ≤ v⃗ [i], i = 1, . . . , n

▶ modified MOVI + weak assumption is sound and
complete

▶ can derive or estimate upper bound b⃗

10 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

11 / 25

Heuristic search

▶ heuristic search powerful for (optimal) planning
▶ does not require enumerating the whole potentially exponential search space
▶ heuristic search algorithms:

SO MO
determinstic A∗, BiA∗ etc. NAMOA∗
stochastic (i)LAO∗, LRTDP etc. our contributions

12 / 25

MOSSP Heuristic

▶ admissible heuristics in single-objective (SO) deterministic case guarantee
optimality with A∗

▶ near optimality for SSPs with (i)LAO∗ and LRTDP in finitely many iterations
▶ optimality with possibly infinitely many iterations

▶ in SO case, heuristic for a state is a scalar h(s) ∈ R≥0
▶ in MO case, heuristic for a state is a set of vectors H(s) ⊂ Rn

≥0

Definition (admissible MO heuristic)
H is admissible if ∀s ∈ S \ G , for all v⃗ ∈ V∗(s) there exists u⃗ ∈ H(s) such that u⃗ ⪯ v⃗
where V∗ is the optimal value function, and ∀g ∈ G , H(g) = {⃗0}.
▶ same definition as in deterministic MO case [Mandow and Pérez-de-la-Cruz, 2010]

13 / 25

Domain independent MOSSP Heuristics
▶ no heuristic: the zero heuristic defined by Hzero(s) = {⃗0}
▶ can use SO heuristics

- ideal point heuristic; apply an SO heuristic hi to each objective in isolation:

Hideal(s) = {[h1(s), . . . hn(s)]}

- e.g. Hmax
ideal, Hpdb2

ideal , Hpdb3
ideal [Bonet and Geffner, 2001; Klößner and Hoffmann, 2021]

▶ can use deterministic MO heuristics
- construct determinised problem by replacing each probabilistic effect with a

deterministic action
- e.g. Hcomax

mo , Hpdb2
mo , Hpdb3

mo [Geißer et al., 2022]
▶ new abstraction heuristics

- combine values from solving smaller projections of the problem
- considers both MO and stoch. features of MOSSPs
- e.g. Hpdb2

mossp, Hpdb3
mossp

▶ other existing SO and MO heuristics can be extended in above ways
14 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

15 / 25

iMOLAO∗

Algorithm: iMOLAO∗
Data: MOSSP problem

P = (S, A, s0, G), heuristic H,
and consistency threshold ε

1 V← H; Π← ∅; F ← {s0} ; I ←
∅; N ← {s0}

2 while
((F∩N)\G ̸= ∅)∧(maxs∈N res(s) < ε)
do

3 F = ∅
4 N ← postorderTraversalDFS(s0, Π)
5 for s ∈ N in the computed order do
6 V(s)← MOBellmanBackup(s)
7 Π(s) = getActions(s, V)
8 if s /∈ I then F = F ∪ {s} ;
9 I = I ∪ {s}

10 return V

▶ gradually build partial solution via heuristic search

1. collect states N of the current best partial
solution Π in postorder traversal DFS order

2. run MO Bellman Backups once on each
state in the collected order

3. update new current partial solution Π;
then return to step 1 and repeat until
covergence criteria is met

16 / 25

MOLRTDP
Algorithm: MOLRTDP
Data: MOSSP problem P = (S, A, s0, G), heuristic

H, and consistency threshold ε
procedure MOLRTDP(P, ε, H)

1 V← H
2 while ¬s0.solved do
3 visited← ∅
4 s ← s0
5 while ¬s.solved do
6 visited.push(s)
7 if s ∈ G then break ;
8 V(s)← MOBellmanBackup(s)
9 a← sampleUnsolvedGreedyAction(s)

10 s ← sampleUnsolvedNextState(s, a)
11 while ¬visited.empty() do
12 s ← visited.pop()
13 if ¬checkSolved(s) then break ;

14 return V

routine checkSolved(s)
1 rv ← true; open← ∅; closed ← ∅
2 if ¬s.solved then open.push(s) ;
3 while ¬open.empty() do
4 s ← open.pop()
5 if res(s) > ε then
6 rv ← false
7 continue
8 for a ∈ getActions(s, V) do
9 for s′ ∈ successors(s, a) do

10 if ¬s′.solved ∧ s′ /∈ open ∪ closed
then open.push(s′) ;

11 if rv then for s ∈ closed do s.solved = true ;
12 else
13 while closed ̸= ∅ do
14 s ← closed .pop()
15 V(s)← MOBellmanBackup(s)

16 return rv

17 / 25

MOLRTDP
Algorithm: MOLRTDP
Data: MOSSP problem P = (S, A, s0, G),

heuristic H, consistency threshold ε
procedure MOLRTDP(P, ε, H)

1 V← H
2 while ¬s0.solved do
3 visited← ∅
4 s ← s0
5 while ¬s.solved do
6 visited.push(s)
7 if s ∈ G then break ;
8 V(s)← MOBellmanBackup(s)
9 a← sampleUnsolvedGreedyAction(s)

10 s ← sampleUnsolvedNextState(s, a)
11 while ¬visited.empty() do
12 s ← visited.pop()
13 if ¬checkSolved(s) then break ;

14 return V

▶ a state is ‘solved’ if its own and all its ancestors’ values
under the current partial solution have converged

1. random greedy walk to the goal on unsolved states if possible, while performing
backups along the way

2. update whether states are solved in reverse order of the trialled walk using
checkSolved; return to step 1 and repeat until s0 is solved

18 / 25

MOLRTDP - checkSolved
routine checkSolved(s)

1 rv ← true; open← ∅; closed ← ∅
2 if ¬s.solved then open.push(s) ;
3 while ¬open.empty() do
4 s ← open.pop()
5 if res(s) > ε then
6 rv ← false
7 continue
8 for a ∈ getActions(s, V) do
9 for s′ ∈ successors(s, a) do

10 if ¬s′.solved ∧ s′ /∈ open ∪ closed
then open.push(s′) ;

11 if rv then for s ∈ closed do
s.solved = true ;

12 else
13 while closed ̸= ∅ do
14 s ← closed .pop()
15 V(s)← MOBellmanBackup(s)

16 return rv

▶ a state is ‘solved’ if its own and all its ancestors’ values
under the current partial solution have converged

2.1. collect all greedy ancestor states of
s under the current partial solution

2.2.a. if values for all ancestor states
have converged, set the state and its
ancestors to be solved

2.2.b. else run backups on the state and
all its ancestors

19 / 25

Contributions

defining MOSSPs: a generalisation of MOMDPs

assumptions for convergence of MOVI for MOSSPs

heuristics for MOSSPs

heuristic search algorithms for solving MOSSPs: iMOLAO∗, MOLRTDP

experimental evaluation

20 / 25

Experimental setup

▶ 5 solvers (MO prefix omitted): VI, TVI, LAO∗, iLAO∗, LRTDP
▶ 9 heuristics: zero, Hmax

ideal, Hcomax
mo , Hpdb2

ideal , Hpdb3
ideal , Hpdb2

mo , Hpdb3
mo , Hpdb2

mossp, Hpdb3
mossp

▶ 30 minute timeout, single CPU core, 4GB memory
▶ 7 domains, mix of MO and probabilistic interesting domains
▶ 610 total problems
▶ 5 × 9 × 610 = 27450 possible experimental configurations

21 / 25

Best planner

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500
(b) Cumulative Coverage per Planner

LRTDP

iLAO∗

LAO∗

TVI

VI

Cumulative coverage per planner, marginalised by heuristics.

22 / 25

Best heuristic

Heuristic Normalised coverage

Hpdb3
mossp 19.1

Hpdb2
mossp 17.9

Hpdb3
mo 17.4

Hpdb2
mo 17.1

Hmax
ideal 14.9

Hpdb3
ideal 14.7

Hpdb2
ideal 14.4

blind 12.1
Hcomax

mo 10.7

Heuristic Unnormalised coverage

Hpdb3
mossp 893.5

Hpdb2
mossp 893.3

Hpdb3
mo 871.2

Hpdb2
mo 851.8

Hpdb3
ideal 768.7

Hmax
ideal 755.2

Hpdb2
ideal 737.2

blind 572.9
Hcomax

mo 504.5

▶ marginalise by planner
▶ normalisation is done over domain due to uneven number of problems
▶ ranking of top 3 and bottom 3 heuristics same

23 / 25

Heuristic accuracy
Critical Path Abstractions

bl
in

d

H
m

ax
id

ea
l

H
co

m
ax

m
o

H
pd

b2
id

ea
l

H
pd

b3
id

ea
l

H
pd

b2
m

o

H
pd

b3
m

o

H
pd

b2
m

os
sp

H
pd

b3
m

os
sp

SAR-4 100 97 44 93 92 44 44 38 26
SAR-5 100 97 45 93 92 45 45 39 28
ExBw-2d 100 59 24 52 45 52 45 52 45
ExBw-3d 100 58 22 52 44 52 44 52 44
Tireworld 100 100 68 100 100 68 68 57 12
VisitAll 100 100 54 100 100 61 53 22 12
VisitAllTire 100 100 50 100 100 66 45 66 45

▶ mean relative error (%) of heuristic value at the initial state relative to the
optimal value for solved instances

▶ error calculated by directed Hausdorff metric difference divided by the norm of the
largest vector of the optimal value:

max
v⃗∈V

min
u⃗∈H

d(v⃗ , u⃗)/ max
v⃗∈V

∥v⃗∥

=⇒ MO features more important than stoch. features to capture in a heuristic
24 / 25

Thank you for your attention!

	defining MOSSPs: a generalisation of MOMDPs
	assumptions for convergence of MOVI for MOSSPs
	heuristics for MOSSPs
	heuristic search algorithms for solving MOSSPs: iMOLAO*, MOLRTDP
	experimental evaluation

