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What are we doing: learning for planning

Learn policies/heuristics that generalise
> to problems of larger size

» domain-dependent learning; e.g.

train small Blocksworld test large Blocksworld

» to problems from different domains; e.g.

» domain-independent learning; e.g.

train Blocksworld test Towers of Hanoi
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What are we not doing:

Reinforcement Learning (RL)
» sample inefficient
» does not exploit model structure
» poor generalisation and scaling to larger problems
Large Language Models (LLMs)
P not reasoning on logic; memorise word semantics
P no correctness guarantees

P poor generalisation and scaling to larger problems
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Prerequisites

Al Planning
> find a sequence of executable actions that achieve a goal
» requires long range reasoning over very large state space
> makes use of predicate logic
Graph Neural Networks (GNNs)
P> message passing paradigm
» allow for arbitrary input graphs with fixed feature dimension

» we focus on Message Passing Neural Networks (MPNNs)
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New Contributions

1. representation: domain-independent planning graphs
2. theory: what heuristics can we learn?
3. implementation: GOOSE planner

4. experiments: state-of-the-art domain-dependent and

-independent learning results
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1. New domain-independent planning graphs
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» graph representations of planning tasks — input into GNN
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STRIPS Learning Graph (SLG)

STRIPS planning task: (P, A, sg, G)

T
D D

P> nodes: propositions + actions
> features: node type + presence of proposition in sy or G
> edges: pre - add - del

» learning version of STRIPS PDG [Shleyfman et al., AAAI-15]
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Finite domain representation Learning Graph (FLG)

FDR planning task: (V, A, so, G)

P> nodes: variables + domain values + actions
> features: node type + value in sp and G
> edges: values, pre - effect

» learning version of FDR PDG [Pochter et al., AAAI-11]
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Lifted Learning Graph (LLG)

lifted planning task: (P, O, A, so, G)
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action schema

» graphs encode action schemata instead of actions
» only propositions are those in sp and G
» node features and edges encode position of objects in the

predicate arguments
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2. Theoretical results: what heuristics can they learn?
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P expressivity analysis of GNNs operating on planning graphs

» domain-independent heuristics we can(not) learn

» proof techniques applicable to other learning for planning
architectures e.g. (LLM, RL)
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2a. Positive results

Theorem

MPNNSs operating on grounded graphs (SLG and FLG) are more
expressive than STRIPS-HGN [Shen et al., ICAPS-20]

» Proof idea: STRIPS-HGN do not encode delete effects
Theorem

MPNNSs operating on grounded graphs can learn h??¢ and h™3

» Proof idea: encode Value lteration into MPNNs +
approximation theorem

» practicality? not much
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2b. Negative results

Theorem

MPNNSs operating on lifted graphs (LLG) cannot learn h?99, hmax,
h™ and h*

> Proof idea: counterexample

P a pair of planning tasks with different heuristic values but
appear the same to MPNNs operating on their LLG
representation

P thus, “scaling” your NN architecture is pointless

Theorem

MPNNs operating on grounded graphs cannot learn h™ and h* nor
any approximation

P> Proof idea: class of counterexamples
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Not all hope is lost

» possible to learn h* for subclasses of planning tasks [1]
» do not need perfect predictions

» can still perform well on GBFS with inaccurate heuristics

[1] Stahlberg, S., Bonet, B., Geffner, H. (2022). Learning General Optimal Policies
with Graph Neural Networks: Expressive Power, Transparency, and Limits. In /ICAPS.
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3. GOOSE architecture

1. states converted to graphs

» one of SLG,FLG, LLG

2. graphs fed into a GNN with learned parameters
» RGCN [Schlichtkrull et al., ESWC-18] for edge-labelled graphs

3. GPU batch evaluate only! successor states

» backend search in Fast Downward implementation of GBFS

Code at https://github.com/DillonZChen/goose :}

'Doing more is suboptimal and is made worse with lazy evaluation GBFS.
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https://github.com/DillonZChen/goose

4. Experiments: Learning paradigms

Domain-Independent Learning [Shen et al., ICAPS-20]
» do not train on evaluation domain

P learn to solve arbitrary planning problems; “zero shot learning’

train

Domain-Dependent Learning
> train on very small tasks from the evaluation domain
» learn to solve specific planning problems

train
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Baselines

» blind: breadth first search
» hFF. GBFS with the AFF heuristic

» HGN: STRIPS-HGN trained in domain-dependent fashion
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4a. Domain-Independent Learning

» train on tasks not from evaluation domain

» training: {IPC benchmarks} \ {evaluation domains}

» testing: number of objects? from 15-100

baselines

GOOSE

blind R¥ HGN SLG FLG LLG

blocks (90) - 19
ferry (90) - 90
gripper (18) 1 18
n-puzzle (50) - 36
sokoban (90) 74 90
spanner (90) - -

visitall (90) - 6
visitsome (90) 3 26

[NV N

10
25
33

9
28
5
6
45
16
73

8
22
3
3
40
41
65

hyperparameters: 8 GNN layers, mean aggr.

2except n-puzzle and Sokoban
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4b. Domain-Dependent Learning

» train on tasks from the same evaluation domain
» training: number of objects® from 2-10

» testing: number of objects® from 15-100

baselines GOOSE

blind R¥ HGN SLG FLG LLG

blocks (90) - 19 - - 6 62
ferry (90) - 92 - 32 33 88
gripper (18) 1 18 5 9 6 18
n-puzzle (50) - 36 - 10 10

sokoban (90) 74 90 10 31 29 34
spanner (90) - - - 60
visitall (90) - 6 25 46 50 44
visitsome (90) 3 26 33 72 39 65

hyperparameters: 8 GNN layers, mean aggr.

3except n-puzzle and Sokoban
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4c. IPC 2023 Learning Track results

» domain-dependent learning
» planners:
> hFF: classical planner
» GOOSE: deep learning
> WL-GOOSE [2]: classical ML
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Domain e 8 =
blocksworld 28 63.0 77
childsnack 26 23.2 30
ferry 68 70.0 76
floortile 12 0.0 2
miconic 90 88.6 90
rovers 34 25.6 37
satellite 65 31.0 57
sokoban 36 33.0 38
spanner 30 46.4 74
transport 41 324 32
sum coverage 430 4132 513

sum IPC score ~ 393.5  391.0 | 471.2

[2] Chen, D. Z., Trevizan, F., Thiébaux, S. (2024). Return to Tradition: Learning
Reliable Heuristics with Classical Machine Learning. In /ICAPS. 19/20
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2. Theoretical Results 3. GOOSE 4. State-of-the-art Results
baselines domain-dep. domain-ind.
" blind 1" HGN SLG FLG LLG SLG FLG
blocks (90) S - - e 9 8
ferry (90) B T )
gripper (18) 118 s 9 618 s 3
npuzze(s) - 3% - 10 10 - 6 3
sokoban 90) 74 90 10 31 29 34 45 40
spanner (90) S e -
visitall (90) -6 25 46TIS0 44 16 41
vissome 90) 3 26 33 72 39 65T 65

Poster 639 Code at https://github.com/DillonZChen/goose
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