Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning

Dillon Z. Chen

Sylvie Thiébaux

What are we doing: numeric planning (PDDL 2.1)

States (resp. actions) now have numeric variables (resp. conditions and effects)

- Undecidable with decidable fragments
- Useful for modelling:
 - capacity constraints
 - resource management
 - Euclidean maps
 - games and puzzles

Ctrl+C, Ctrl+V classical search techniques to numeric planning

- 1. unifying novelty heuristics for numeric planning
- 2. multi-queue search
- 3. portfolios

Big coverage tables and empirical results on IPC 2023 Numeric Track

1. Numeric Novelty Heuristics

Two steps for defining a novelty heuristic

1. define a *novelty feature*

$$f:S^{\mathbb{N}} imes S o (\mathbb{R}\cup\{ot\})^{N}$$

"vector representation of a state, based on previously seen states"

2. given novelty feature f and base heuristic h, define a *novelty heuristic*

$$n_f^h: S^{\mathbb{N}} \times S \to \mathbb{R}$$

"map states to scalar values, based on previously seen states"

"vector representation of a state, based on previously seen states"

Two examples:

- Assignment (A)
- Boundary (B)

1.1.1. Novelty Feature: Assignment Feature

Assignment (A)

- assign truth value of propositional variables
- assign numeric value of numeric variables

1.1.2. Novelty Feature: Boundary Feature

 $\mathsf{Boundary}^1(\mathsf{B})$

- incrementally build intervals from min/max of numeric vals
- assign numeric value to interval

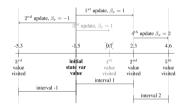


Image from [1]

¹Florent Teichteil-Königsbuch, Miquel Ramírez, and Nir Lipovetzky. "Boundary Extension Features for Width-Based Planning with Simulators on Continuous-State Domains". In: *IJCAI*. 2020.

1.2. Example Novelty Heuristics

"map states to scalar values, based on previously seen states"

Two examples:

- Partition Novelty (PN)
- Quantified Both (QB)

Some notation:

- ▶ fix $k \in \mathbb{N} \setminus \{0\}$
- ▶ let J denote indices of a feature, $|J| \le k$
- $[J]^s$ the values of feature at J in s

Partition Novelty¹ (^kPN)

- ▶ J in s is novel iff $[J]^s$ is new in previous states t with h(s) = h(t)
- heuristic = minimum size of novel Js

¹Nir Lipovetzky and Hector Geffner. "Width and Serialization of Classical Planning Problems". In: ECAI. 2012.

1.2.2. Novelty Heuristic: Quantified Both

Quantified Both¹ (^{k}QB).

- new: we generalise QB for arbitrary k
- ▶ J in s is novel iff h(s) < h(t) for previous states t with $[J]^s = [J]^t$
- heuristic = count novel variable subsets while
 - prioritising states with small novel subsets
 - tiebreaking on 'bad' subsets

¹Michael Katz et al. "Adapting Novelty to Classical Planning as Heuristic Search". In: ICAPS. 2017.

- 1. Multi-Queue Search/Alternation Search¹ (M)
 - one search queue for each heuristic
- 2. (Static) Portfolios² (P)
 - ▶ try each configuration with $\frac{1}{|\text{heuristics}|}$ of the time limit

 ¹Gabriele Röger and Malte Helmert. "The More, the Merrier: Combining Heuristic Estimators for Satisficing Planning". In: *ICAPS*. 2010.
 ²Malte Helmert, Gabriele Röger, and Erez Karpas. "Fast Downward Stone Soup: A Baseline for Building Planner Portfolios". In: *ICAPS* 2011. Workshop on Planning and Learning. 2011.

3. Experiments

▶ IPC 2023 Numeric Track, 20 domains × 20 problems

▶ 5 minute timeout, 8GB memory

3.1. Experiments: Novelty Heuristics

Try (numeric h^{add})¹ with {novelty features} × {novelty heuristics}
k = 2

Numeric Heuristics							Novelty Heuristics				_ Abbreviations:		
$h^{\rm gc}$	$h^{ m md}$	$h^{ m aibr}$	$h^{ m add}$	$h^{ m radd}$	$\eta_{ m mub}$	$h^{\rm mrp}{}_{\rm +hj}$	$h^{ m add}_{\langle { m A},{ m PN} angle}$	$h^{ m add}_{\langle { m B},{ m PN} angle}$	$h^{ m add}_{\langle { m A}, { m QB} angle}$	$h^{ m add}_{\langle { m B}, { m QB} angle}$	 A: Assignment novelty feature B: Boundary novelty feature PN: Partition Novelty novelty heuristic 		
117	200	119	183	171	176	217	178	181	215	236	QB: Quantified Both novelty heuristic		

* Results may differ on specific domains

- 1. h^{add} best standalone heuristic
- $2. \ \mathsf{QB} > \mathsf{PN}$
- 3. B > A (slightly)

¹Enrico Scala, Patrik Haslum, and Sylvie Thiébaux. "Heuristics for Numeric Planning via Subgoaling". In: IJCAI. 2016.

3.2. Experiments: Combining Heuristics

Define

- $3h = [h^{\text{md}}, h^{\text{add}}, h^{\text{mrp}} + \text{hj}]$ (list of top 3 performing heuristics)
- > 3n = 3h with B nov. features and QB nov. heuristics
- M(·) = multi-queue of input heuristics
- P(·) = static portfolio of input heuristics
- ▶ PATTY = state-of-the-art SMT numeric planner on IPC 2023 Numeric benchmarks¹

N	I GBFS		Р	GBFS		SMT
M(3h)	M(3n)	$\mathbf{M}(3h\ 3n)$	P(3h)	P(3n)	P(3h 3n)	PATTY
261	244	274	290	292	315	262

* Results may differ on specific domains

- 1. Portfolios > Multi-Queue
- 2. Search > SMT; in both *coverage* and *plan length*

¹Matteo Cardellini, Enrico Giunchiglia, and Marco Maratea. "Symbolic Numeric Planning with Patterns". In: AAAI. 2024.

- ▶ more benchmarks (~ 90% solved by us or SMT)
- more applications (due to better scaling)
- plenty to do for optimal numeric planning
- learning

Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning Dillon Z. Chen, Sylvie Thiébaux

Porting classic search techniques to numeric planning

- 1. Unify definition of novelty heuristics
 - new: extending QB to arbitrary k
- 2. New simple heuristic h^{md} (not in this talk)
- 3. Experiments with mostly nice conclusions
 - QB novelty heuristic works best
 - Portfolios generally outperforms multi-queue/alternation search
 - Search generally outperforms constraint-based solving

	N	lumer	Novelty Heuristics							
$h_{\rm BC}$	p_{md}	$h^{\rm aibr}$	h^{add}	$h^{\rm radd}$	$u_{\rm mb}$	$h^{\rm mp+hj}$	$h^{\rm add}_{\langle \Lambda, PN\rangle}$	$h^{\rm add}_{\rm \langle B, PN\rangle}$	$h^{\rm add}_{\langle {\rm A}, {\rm QB} \rangle}$	$h_{\rm (B,QB)}^{\rm add}$
117	200	119	183	171	176	217	178	181	215	236

M GB	FS		Р	SMT			
	M(3n)	M(3h 3n)	P(3h)	P(3n)	P(3h 3n)	PATTY	
2	44	274	290	292	315	262	

Abbreviations:

- A: Assignment novelty feature
- B: Boundary novelty feature
- PN: Partition Novelty novelty heuristic
- QB: Quantified Both novelty heuristic
- M: Multi-Queue/Alternation Search for combining heuristics
- P: Portfolios for combining heuristics

Thanks! Questions?

code at https://github.com/DillonZChen/numeric-planner-2024.git