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Abstract
Generalised planning (GP) refers to the task of synthesising
programs that solve families of related planning problems.
We introduce a novel, yet simple method for GP: given a set
of training problems, for each problem, compute an optimal
plan for each goal atom in some order, perform goal regres-
sion on the resulting plans, and lift the corresponding out-
puts to obtain a set of first-order Condition→ Actions rules.
The rules collectively constitute a generalised plan that can
be executed as is or alternatively be used to prune the plan-
ning search space. We formalise and prove the conditions
under which our method is guaranteed to learn valid gener-
alised plans and state space pruning axioms for search. Ex-
periments demonstrate significant improvements over state-
of-the-art (generalised) planners with respect to the 3 metrics
of synthesis cost, planning coverage, and solution quality on
various classical and numeric planning domains.

1 Introduction
Generalised planning (GP) aims to compute generalised
plans: programs that solve families of related planning prob-
lems. A grand goal of GP is to amortise synthesis costs by
solving families of planning problems faster than general-
purpose planners that solve each problem individually. In-
deed, there exists several planning domains that are compu-
tationally easy to solve and exhibit satisficing policies, such
as variants of the package delivery domain (Helmert 2003).
In the real world, UPSTM delivered over 20 million packages
daily across over 200 countries and territories in 2024 (UPS
2025). However, state-of-the-art, general-purpose planners
struggle to scale up to a simplified version of the delivery
problem with 100 packages (Taitler et al. 2024).

We consider the GP problem that consists of a planning
domain D, and a set of training problems Ptrain and testing
problems Ptest drawn from D, as depicted in Figure 1. A
generalised planner synthesises a generalised plan from D
and Ptrain that solves problems in Ptest. Metrics for eval-
uating the effectiveness of a generalised planner (Srivas-
tava, Immerman, and Zilberstein 2011) include the resources
it takes to synthesise a generalised plan (synthesis cost),
the time it takes to instantiate generalised plans on unseen
problems (instantiation cost), and the quality of instantiated
plans (solution quality).

In this paper, we introduce a new generalised planner
that draws upon insights and long-standing ideas of goal
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Figure 1: A common GP setup consisting of a planning do-
main D, and a set of training problems Ptrain and testing
problems Ptest. A generalised planner consists of two mod-
ules: (1) synthesis and (2) instantiation. See text for details.

regression from the knowledge representation community
and problem relaxation from the planning community to ad-
vance the state of the art in GP over the three aforemen-
tioned metrics. Our approach consists of an efficient three
step process of (1) solving for each goal of each problem in
Ptrain optimally in an arbitrary order, (2) performing goal
regression (Fikes, Hart, and Nilsson 1972; Waldinger 1977;
Lozano-Perez, Mason, and Taylor 1984; Reiter 1991, 2001)
over the resulting plans, and (3) lifting the corresponding
partial-state, macro-action pairs into sets of first-order rules
constituting a generalised plan. We treat planning states as
databases (Corrêa et al. 2020) and lifted rules as queries, and
correspondingly employ database algorithms for instantiat-
ing generalised plans quickly on problems in Ptest. We also
leverage derived predicates and axioms to encode learned
rules for state space pruning in search.

We formalise the conditions under which our approach
learns sound and complete generalised plans, and under
which the encoding of learned rules as axioms gives rise to
provably optimal plans when combined with optimal search
planners. We manifest our contributions in the MOOSE plan-
ner1and conduct experiments with MOOSE on classical and
numeric planning domains and satisficing and optimal plan-
ning settings. We observe that MOOSE outperforms state-
of-the-art baseline planners by large margins on Easy-to-

1Available at https://github.com/dillonzchen/moose
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Figure 2: Left: a simplified STRIPS transportation domain. Middle: state progression (purple) and goal regression (yellow) via
a putDown action. Right: the generalised plan created by lifting the regressed states, goal condition, and plan actions.

Solve, Hard-to-Optimise (ESHO) planning domains — P-
time solvable and NP-hard to solve optimally domains.
We summarily list our contributions as follows.

• We introduce algorithms for synthesising and instantiating
generalised plans that employ goal regression, problem re-
laxation, and first-order query techniques.

• We formalise the conditions under which our approach is
sound and complete for satisficing and optimal planning.

• We conduct experiments and demonstrate the effective-
ness of our algorithms in satisficing and optimal planning
over various classical and numeric planning domains.

2 Planning Background and Notation
We adopt standard notation for representing planning prob-
lems via the STRIPS fragment of the Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998; Haslum
et al. 2019). Our approach also handles a fragment of nu-
meric planning but we defer such definitions to Appendix A.

Mathematical Notation Let N/N0 denote the natural
numbers excluding/including 0, α⃗ denote an ordered se-
quence of items, α⃗i denote the ith element of α⃗, α⃗[i:] all
elements from the ith element onwards in α⃗ inclusive, and
|s| the size of a set or length of a sequence s.

STRIPS Planning A planning problem is represented by
two components: a domain, consisting of lifted predicates
and action schemata describing the action theory, and a
problem specification, consisting of a finite set of objects,
an initial state, and a goal condition.

A planning domain is a tuple D = ⟨P, C,A⟩, where
P is a set of predicates, C a set of constant objects, and
A a set of action schemata. A predicate p ∈ P has a
set of argument terms x1, . . . , xnp where np ∈ N0 de-
pends on p. An action schema a ∈ A is a tuple a =
⟨var(a), pre(a), add(a), del(a)⟩ where var(a) is a set of
parameter variables, and preconditions pre(a), add add(a)
and delete del(a) effects are finite sets of predicates from P
with arguments instantiated with variables or objects from
var(a) ∪ C.

Example 1 (Transportation Domain). We can model a sim-
plified transportation domain where an agent can trans-
port items between locations in STRIPS, partially de-
picted in Figure 2, as follows. We define a domain
D = ⟨P, C,A⟩ with P = {at(?x , ?y), atRobot(?x ),
handFree(), holding(?x )}, C = ∅, and A containing the
three action schemata:
putDown

var = {?obj , ?loc}
pre = {atRobot(?loc), holding(?obj )}
add = {at(?obj , ?loc), handFree()}
del = {holding(?obj )}

move

var = {?from, ?to}
pre = {atRobot(?from)}
add = {atRobot(?to)}
del = {atRobot(?from)}

pickUp

var = {?obj , ?loc}
pre = {atRobot(?loc), at(?obj , ?loc), handFree()}
add = {holding(?obj )}
del = {at(?obj , ?loc), handFree()}

A planning problem is a tuple P = ⟨D, s0, g, O⟩ with
D a planning domain, s0 the initial state, g the goal condi-
tion, and O ⊇ C a finite set of objects. A (ground) atom is
a predicate whose argument terms are all instantiated with
objects. A state in a planning problem is a set of atoms and
operate under the closed world assumption: any atom not in
a state is presumed false. The initial state s0 and goal con-
dition g are both sets of atoms. A state s is a goal state if
g ⊆ s. We say that the problem P belongs to the domain D.
A (ground) action is an action schema a where each parame-
ter term is instantiated with an object, denoted a(o1, . . . , on)
with o1, . . . , on ∈ O. An action a is applicable in a state s if
pre(a) ⊆ s, in which case we define the successor

succ(s, a) = (s \ del(a)) ∪ add(a).



Otherwise, a is not applicable in s and succ(s, a) = ⊥.
A plan for a planning problem is a finite sequence of ac-

tions α⃗ = a1, . . . , an where si = succ(si−1, ai) ̸= ⊥ for
i = 1, . . . , n and sn is a goal state. We overload the notation
of successor for sequences of actions with succ(s, α⃗) = sn
as if s = s0. The length of a plan α⃗ is its number of actions.
A problem P is solvable if a plan exists for P. Satisficing
(resp. optimal) planning refers to the task of finding any plan
(resp. any plan with the lowest length) for P.

Example 2 (Transportation Problem). We model a
transportation problem where a robot and a dog are
in the kitchen, and a cake that is in the backyard has
to be brought into the kitchen as a STRIPS problem
P = ⟨D, s0, g, O⟩ where D is the transportation domain in
Example 1, s0 = {at(cake, backyard), at(dog , kitchen),
atRobot(kitchen), handFree()}, g = {at(cake, kitchen)},
and O = {backyard , cake, dog , kitchen}. A plan is given by
α⃗ = move(kitchen, backyard), pickUp(cake, backyard),
move(backyard , kitchen), putDown(cake, kitchen). The
problem and plan are partially depicted in Figure 2.

We introduce some additional notational shorthands to be
used later. Let P[ω] denote the ω component of a problem P;
e.g., P[s0] is the initial state of P. Next, given a state s and
set of atoms g′ for a problem P, let Ps = ⟨D, s,P[g],P[O]⟩
denote the same problem with the initial state replaced with
s, and Ps,g′ = ⟨D, s, g′,P[O]⟩ denote the same problem
with the initial state and goal replaced with s and g′.

Goal Regression Goal regression refers to the computa-
tion of the preimage of a goal under a sequence of ac-
tions via regression rewriting. Goal regression computes
the minimal set of goal relevant atoms, and has been used
for heuristic synthesis (Bonet and Geffner 2001; Scala,
Haslum, and Thiébaux 2016), plan monitoring (Fritz and
McIlraith 2007), policy synthesis for lifted Markov deci-
sion processes (Gretton and Thiébaux 2004; Sanner and
Boutilier 2009), nondeterministic planning (Muise, McIl-
raith, and Beck 2012, 2024), symbolic search (Pang and
Holte 2011; Alcázar et al. 2013; Speck, Seipp, and Tor-
ralba 2025), numeric planning (Illanes and McIlraith 2017),
generating macro-actions (Hofmann, Niemueller, and Lake-
meyer 2020), GP (Illanes and McIlraith 2019; Yang et al.
2022), and embodied AI (Kaelbling and Lozano-Pérez 2011;
Xu et al. 2019; Liu et al. 2025).

A set of atoms g is regressable over an action a if add(a)∩
g ̸= ∅ and del(a) ∩ g = ∅, in which case we define the
regression

regr(g, a) = (g \ add(a)) ∪ pre(a).

Otherwise, g is not regressable over a and regr(g, a) = ⊥.

Problem Statement: Generalised Planning
We introduce the generalised planning (GP) problem as a set
of planning problems sharing the same domain. We describe
the variant involving a set of training problems as seen com-
monly in recent GP works (e.g. (Francès, Bonet, and Geffner
2021; Drexler, Seipp, and Geffner 2022; Yang et al. 2022)).

A generalised planning problem is a tuple GP =
⟨Ptrain,Ptest⟩where Ptrain (resp. Ptest) is a finite (resp. pos-
sibly infinite) set of problems belonging to the same domain
D. A generalised plan π for a GP problem is a program-
matic plan that is synthesised from the domainD and Ptrain,
and can be instantiated on any planning problem P ∈ Ptest
to return a valid plan π(P) = α⃗ if a plan exists for P, or
otherwise determine that no plan exists for P. Examples of
programmatic plans include finite state controllers (Bonet,
Palacios, and Geffner 2009, 2010; Hu and De Giacomo
2011; Aguas, Jiménez, and Jonsson 2018), policies derived
from lifted rules (Srivastava et al. 2011; Illanes and McIl-
raith 2019; Francès, Bonet, and Geffner 2021) and general-
purpose programs (Levesque 2005; Srivastava, Immerman,
and Zilberstein 2008; Segovia-Aguas, Celorrio, and Jonsson
2024; Silver et al. 2024).

3 Generalised Planning via Goal Regression
We name our generalised plans as MOOSE programs.
MOOSE programs are found in a two-step process as de-
scribed in Section 3.1: (a) decompose the set of training
problems Ptrain into smaller problems constituting single-
ton goal conditions and generate optimal plans for each in
order, and (b) apply goal regression from the singleton goals
using the order of the optimal plans found in (a) to generate
a set of lifted rules. MOOSE programs can be instantiated
into a plan for a problem by deriving an action from the rule
set at every state until the goal is reached (Section 3.2), or
used to guide search for optimal planning (Section 3.3).

MOOSE programs are sets of lifted rules which indicate
an action or macro action to execute, conditioned on a par-
tial state and a goal that has not yet been achieved. A distinct
feature of such rules is that the antecedent of a single rule
compactly captures a set of states. Lifted rules can then be
grounded on states if their antecedent condition is satisfied.
Our rules are similar to existing lifted rules (Khardon 1999;
Illanes and McIlraith 2019; Yang et al. 2022) with the ex-
tension that we may now have macro actions in rule heads.
Furthermore, each rule has an associated precedence value
that determines its execution priority as is common in logic
programming. Figure 2 illustrates the synthesis procedure
and structure of MOOSE programs.
Definition 1 (MOOSE Rule). Let GP = ⟨Ptrain,Ptest⟩ be a
GP problem. A MOOSE rule r is a tuple

r = ⟨var(r), stateCond(r), goalCond(r), actions(r)⟩

where var(r) is a finite set of free variables, stateCond(r)
and goalCond(r) are finite sets of predicates instantiated
with terms in var(r), and actions(r) is a finite sequence
of action schemata instantiated with terms in var(r).
Definition 2 (Grounding). Let r be a MOOSE rule, P be a
problem and s a state in the state space of P. A grounding of
r in s is an assignment of objects to variables f : var(r)→
P[O] such that stateCond(r)|f ⊆ s and goalCond(r)|f ⊆
(P[g] \ s), the set of goal atoms not yet achieved. The |f
notation denotes replacing every occurrence of a free vari-
able term with the corresponding object in f . In the case
that a grounding f exists, we define the nondeterministic



Algorithm 1: MOOSE Program Synthesis

Input: Training problems Ptrain = {P(1), . . . ,P(nt)},
and number of goal permutations np ∈ N
(default: 3).

Output: MOOSE program π.
1 π ← ∅
2 for i = 1, . . . , nt do
3 ng ← |P(i)[g]|
4 for j = 1, . . . ,min(np, ng!) do
5 s← P(i)[s0] ; g⃗ ← newPermutation(P(i)[g])
6 for k = 1, . . . , ng do
7 g′ ← {g⃗k}
8 α⃗← optimalPlan(P

(i)
s,g′)

9 if α⃗ = ⊥ then continue
10 π ← π ∪ extractRules(α⃗, g′) // Alg. 2
11 s← succ(s, α⃗)
12 return π

function grounding(r, s,P[g]) = actions(r)|f , where f is
some grounding. Otherwise, grounding(r, s,P[g]) = ⊥.
Definition 3 (MOOSE Program). A MOOSE program π is a
set of MOOSE rules R and a function R → N representing
a precedence ranking on the rules for execution.

As to be described later, if several rules are applicable in
a given state, the rule with the lowest precedence ranking
with ties broken arbitrarily is chosen for execution. Relat-
edly, Yang et al. (2022) specify a total order on policy rules,
whereas MOOSE specifies more relaxed partial order. Next,
we define lifting of a ground plan and set of atoms to a set
of quantified actions and predicates. Lifting will be used in
the synthesis module to generate reusable rules.
Definition 4 (Lifting). Let s and g be finite sets of ground
atoms and α⃗ = a1, . . . , am a sequence of ground actions.
Let o1, . . . , oq be the union of all objects from the atoms
and actions that are not in C. Next we define the set of free
variable terms var = {v1, . . . , vq} and lift each action and
atom by replacing each constant oi with its corresponding
free variable vi in var . We denote

lift(s, g, α⃗) = ⟨var , s′, g′, α⃗′⟩
with α⃗′ the sequence of ground actions lifted by variables in
var , and similarly for s′ and g′ the sets of lifted atoms.

3.1 Synthesising MOOSE Programs
Algorithm 1 summaries the main MOOSE program synthesis
procedure. The input is a set of unlabelled training problems
and a number np representing the effort spent on extracting
information from a single problem. The main idea is that
the problem is relaxed by decoupling the goals and greedily
solving them optimally and in order. Each resulting plan re-
gresses the corresponding singleton goal, and the regressed
goal and plan is then lifted into a lifted macro action rule.

The main algorithm gradually builds from an empty rule
set (Line 1) by iterating over all training problems (Line 2)
and the specified number np of goal orderings (Line 4). For

Algorithm 2: Rule Extraction Routine
Input: Sequence of actions α⃗ and set of atoms g.
Output: MOOSE rules with precedence values π.

1 π ← ∅; s← g
2 for i = |α⃗| , . . . , 1 do
3 s← regr(s, α⃗i) ; r ← lift(s, g, α⃗[i:])
4 π ← π ∪ {(r, |α⃗| − i+ 1)}
5 return π

Algorithm 3: MOOSE Program Instantiation
Input: A planning problem P and MOOSE program π.
Output: A plan α⃗ and success or failure status.

1 s← P[s0]; α⃗← [] // empty sequence
2 while P[g] ̸⊆ s do
3 β⃗ ← ⊥
4 for r ∈ π in ascending precedence values do
5 β⃗ ← grounding(r, s,P[g])

6 if β⃗ ̸= ⊥ then break
7 if β⃗ = ⊥ or detected cycle then return α⃗, failure

8 α⃗← α⃗; β⃗ // sequence concatenation

9 s← succ(s, β⃗)
10 return α⃗, success

each goal ordering and training problem, MOOSE finds plans
via an optimal planner (Line 8) with the singleton goals
(Line 7) in order (Line 6), while progressing the current state
along the way (Line 11). If no plan exists, i.e. if the prob-
lem is unsolvable with the current state and singleton goal
pair, no rules are extracted and the state is not progressed
(Line 9). Otherwise, if a plan exists, then we extract rules
from the plan and add them to the incumbent plan (Line 10)
as described in Algorithm 2. It begins by initialising the to-
be-regressed state s by the goal (Line 1). Next, it regresses s
in reverse order of the plan α⃗ and then lifts the correspond-
ing regressed state s, goal g, and suffix of the plan into a rule
r (Lines 2 to 3). Then we append the rule alongside its cost-
to-go from the partial state s to goal g under the plan suffix
as its precedence value (Line 4).

Example 3 (Transportation Program Synthesis). We il-
lustrate Lines 8 to 10 of Algorithm 1 with our run-
ning transportation example from Example 2 as a train-
ing problem. Note that the problem already has a single-
ton goal g = {at(cake, kitchen)}. The plan α⃗ from the
example is the only optimal plan and thus is the out-
put of Line 8. Since a plan exists for the problem, Line
9 does nothing. Line 10 triggers Algorithm 2 which be-
gins by setting s to g. The first regressed state under the
final action in the plan a = putDown(cake, kitchen)
is regr(s, a) = {atRobot(kitchen), holding(cake)}. Note
that the fact at(dog , kitchen) is ignored during regression,
indicating that it is irrelevant towards the goal.

The regressed state and the singleton goal is lifted to con-



struct the following rule

var = {?obj , ?loc}
stateCond = {atRobot(?loc), holding(?obj )}
goalCond = {at(?obj , ?loc)}
actions = putDown(?obj , ?loc)

Repeating the procedure again under the penultimate
action in the plan gives us the next regressed state
{atRobot(backyard), holding(cake)}which is lifted to con-
struct the rule

var = {?obj , ?l1 , ?l2}
stateCond = {atRobot(?l1 ), holding(?obj )}
goalCond = {at(?obj , ?l2 )}
actions = move(?l1 , ?l2 ), putDown(?obj , ?l2 )

The procedure is repeated two more times as α⃗ has four ac-
tions, resulting in four rules added to π. The first two steps
of regression and lifting are further illustrated in Figure 2.

3.2 Satisficing Planning with MOOSE
A learned MOOSE program can be used for satisficing plan-
ning by repeatedly choosing and executing a rule to progress
the initial state to a goal state. Algorithm 3 summarises
the execution procedure for an input planning problem and
MOOSE program. Each iteration of the algorithm’s main
loop queries the set of rules in order of ascending precedence
values until a rule associated with goals not yet achieved can
be grounded (Lines 4 to 6), from which the corresponding
macro action is added to the incumbent plan and applied to
the current state (Lines 8 to 9). The loop breaks once the
goal is reached (Line 2), no actions can be queried from the
set of rules, or a cycle is encountered (Line 7).

3.3 Optimal Planning with MOOSE
Optimal planning can be performed via a synthesised
MOOSE program by extending the corresponding planning
problem with MOOSE rules. The rules, ignoring precedence
values, are encoded into PDDL axioms (Thiébaux, Hoff-
mann, and Nebel 2005) representing search control for op-
timal planners that support axioms. Theorem 18 later for-
malises conditions under which encodings of MOOSE pro-
grams preserve optimal solutions.

We now extend a given GP domain D = ⟨P, C,A⟩ with a
MOOSE program π. We add predicates pg and pug for each
p ∈ P , representing goals in a planning problem and un-
achieved goals in the current state, respectively. Then each
state in a problem P is extended with atoms pg(o⃗) for each
goal atom p(o⃗) ∈ P[g] following Martı́n and Geffner (2004).
For each predicate p we introduce the axiom

pug(x⃗)← pg(x⃗) ∧ ¬p(x⃗)
for computing unachieved goals. Then for each ac-
tion schema a ∈ A we add a new derived predi-
cate aπ to P and pre(a). Then for each MOOSE rule
⟨x⃗, stateCond , goalCond , α⃗⟩, we introduce an axiom

(α⃗1)π(x⃗)←
∧

p(y⃗)∈stateCond

p(y⃗) ∧
∧

p(y⃗)∈goalCond

pug(y⃗)

General Case PTIME Subplans

TGI (5) PSPACE-cmpl. (8) in P (10)
SGI (6) PSPACE-cmpl. (9) NP-cmpl. (11)
OGI (7) PSPACE-cmpl. (12) NP-cmpl. (13)

Table 1: Computational complexity of planning problems
exhibiting notions of goal independence. Definitions and
theorem references are indicated in brackets.

for restricting the application of an action with the MOOSE
rule condition. In this way, the axioms restrict the set of
applicable actions at any ground state to the first action of
each macro action that the MOOSE rules would generate,
and hence prune the entire search space. We note that the
axioms do not exhibit recursion and thus can be encoded via
disjunctive preconditions (Davidson and Garagnani 2002).
Differently to previous works that prune the search space
with lifted rules (Bacchus and Kabanza 2000; Yoon, Fern,
and Givan 2008; Krajnanský et al. 2014), our approach does
not require writing new solvers but instead makes use of ex-
isting planners that support more expressive PDDL features.

4 Soundness and Completeness Conditions
In this section, we provide theoretical results concerning
the soundness and completeness of MOOSE programs for
both satisficing and optimal planning (Theorems 17 and 18).
Proofs of all statements are provided in Appendix B. The
idea is that under assumptions on the complexity of a GP
problem ⟨Ptrain,Ptest⟩ and given sufficient training prob-
lems, Algorithm 1 synthesises generalised plans from Ptrain
that are sound and complete for solving problems in Ptest,
and furthermore finds optimal plans when MOOSE rules are
used for search as described in Section 3.3. We begin classi-
fying planning domains based on the separability of goals.

Goal Independence Early works in planning worked un-
der the assumption that conjunctive goals can be split apart
into their individual components and achieved indepen-
dently. The Sussman (1973) anomaly illustrates a simple
Blocksworld example for how this was not true in general,
giving rise to algorithms which aim to achieve goals simul-
taneously (Waldinger 1977) and to provably complete algo-
rithms in the current planning age. Regardless, as we see
later in our experiments, a non-trivial portion of benchmark
planning domains are P-time solvable and furthermore ex-
hibit goals that can be achieved independently from one an-
other. In this section, we formalise three variants of goal in-
dependence (TGI, SGI, OGI) depending on whether serial-
isation is required and the effects of goal independence on
plan optimality. We further prove their computational com-
plexities summarised in Table 1.

Our first notion of goal independence, TGI, describes
planning problems that can be solved by solving for each
goal conjunct optimally in any order.
Definition 5 (True Goal Independence). A planning prob-
lem P exhibits true goal independence (TGI) if for all or-
derings g⃗ of goal atoms in P[g], the following greedy algo-
rithm is sound and complete: (1) set s = P[s0] and then (2)



iterate over goal atoms g⃗i in g⃗ in order by (2a) finding any
optimal plan α⃗(i) from s to a goal state containing g⃗i and
(2b) progressing s via α⃗(i). We say that P exhibits polyno-
mial TGI (pTGI) if step (2a) can run in polynomial time.
Lastly, we say that P exhibits TGI with respect to C ∈ N,
denoted TGIC , if all optimal plans in step (2a) have plan
length bounded by C.

Our second notion of goal independence, SGI, generalises
TGI by relaxing the requirement that the aforementioned
greedy algorithm is valid for any order of goal conjuncts.
SGI only requires that the greedy algorithm is valid for at
least one order of goal conjuncts.
Definition 6 (Serialisable Goal Independence). A planning
problem P exhibits serialisable goal independence (SGI) if
there exists an ordering g⃗ of goals P[g] such that the greedy
algorithm operating on g⃗ is sound and complete. Similarly,
we say that P exhibits polynomial SGI (pSGI) if step (2a) in
the greedy algorithm runs in polynomial time.

Our final notion of goal independence, OGI, strengthens
the previous independence notion by ensuring that there is
at least one order of goal conjuncts for which the greedy
algorithm solves the problem optimally.
Definition 7 (Optimal Goal Independence). A planning
problem exhibits Optimal Goal Independence (OGI) if there
exists an ordering g⃗ of goals P[g] such that the algorithm
described in Definition 5 is optimally sound and complete
with the change that it is now nondeterministic and step (2a)
is changed to “guess an optimal plan α⃗(i) such that the con-
catenation of plans is optimal”. pOGI is defined similarly
where (2a) guesses an optimal plan in polynomial time.

Korf (1987, Sections 4.3 and 4.4) introduce similar con-
cepts of goal independence corresponding to our TGI and
SGI definitions that form the foundation of heuristics for
search. We next theoretically analyse the computational
complexity of problems exhibiting the GI definitions with
proofs in Appendix B. We say that a GP problem GP =
⟨Ptrain,Ptest⟩ exhibits TGI if every problem in Ptrain∪Ptest
exhibits TGI, and analogously for SGI and OGI. We then let
PLANSAT(GP) denote the computational problem of decid-
ing if a plan exists for a problem in Ptest. The following
statements show that without the polynomial time constraint
of step (2a) of the aforementioned greedy algorithm, TGI
and SGI do not make planning easier.
Proposition 8. PLANSAT(GP) of a GP problem GP ex-
hibiting TGI is PSPACE-complete.
Corollary 9. PLANSAT(GP) of a GP problem GP exhibit-
ing SGI is PSPACE-complete.

Once we add the polynomial time constraint of step (2a),
both pTGI and pSGI become easier. However, only pTGI
becomes tractable while pSGI becomes NP-complete.
Proposition 10. PLANSAT(GP) of a GP problem GP ex-
hibiting pTGI is in P.
Proposition 11. PLANSAT(GP) of a GP problem GP ex-
hibiting pSGI is NP-complete.

Next, given that SGI is a special case of OGI, we also have
the following statements.

Corollary 12. PLANSAT(GP) of a GP problem GP ex-
hibiting OGI is PSPACE-complete.
Corollary 13. PLANSAT(GP) of a GP problem GP ex-
hibiting pOGI is NP-complete.

Planning Problem Equivalence Before we state the as-
sumptions required for MOOSE to synthesise sound and
complete generalised plans, we define the notion of equiv-
alence for (lifted) problems. We define equivalence via bi-
jection between objects similarly to (Drexler et al. 2024),
in contrast to work by Sievers et al. (2019) which reduces
problems to graph automorphisms.
Definition 14 (Equivalence Relation). Given a GP problem
⟨Ptrain,Ptest⟩, we define a relation ∼U on planning prob-
lems in Ptrain ∪Ptest by P1 ∼U P2 if there exists a bijec-
tive mapping f : P1[O] → P2[O] such that f(c) = c for
c ∈ C, F (P1[s0]) = P2[s0] and F (P1[g]) = P2[g] where
F (s) := {p(f(o1), . . . , f(on)) | p(o1, . . . , on) ∈ s}.

Indeed the defined relation is an equivalence relation and
furthermore defines a natural notion of equivalence for plan-
ning problems, where reflexivity, symmetry and transitivity
follows from bijective functions in the definition of ∼U .
Proposition 15. The relation ∼U on planning problems of
any given GP problem is an equivalence relation.
Proposition 16. Suppose P1 ∼U P2 and let f : P1[O] →
P2[O] be the bijective mapping satisfying the definition of
∼U . Then a sequence of actions a1, . . . , an is a plan for P1

if and only if a′1, . . . , a
′
n is a plan for P2, where a′i is defined

by a′i = a(f(o1), . . . , f(on)) if ai = a(o1, . . . , on) for some
a ∈ A and o1, . . . , on ∈ P1[O].

Soundness and Completeness of MOOSE Now we state
and prove the main theorems of the section. The main idea
of the statement is that given sufficiently many training data,
MOOSE can construct a database of rules for TGIC problems
that can solve all possible problems with singleton goals. By
assuming a bound in the definition of TGIC of plan lengths,
this database has a finite size which is exponential in the
input in the worst case.
Theorem 17 (PLANSAT soundness and completeness con-
ditions). There exists a set Ptrain such that for all GP prob-
lems GP = ⟨Ptrain,Ptest⟩ exhibiting TGIC , Algorithm 3
using the plan π synthesised from Algorithm 1 with Ptrain is
sound and complete for Ptest for satisficing planning.

The bound on the size of training problems in the proof of
Theorem 17 is exponential in the domain size. This bound
may be tight and unavoidable given that it has been shown
that GP under the QNP (Srivastava et al. 2011) framework
is provably equivalent to fully observable non-deterministic
(FOND) planning (Bonet and Geffner 2020) which is known
to be EXPTIME-complete. A fruitful next step is to develop
a learning algorithm that learns to generate and select what
training data is required, possibly given implicitly in the
input GP problem (Srivastava, Immerman, and Zilberstein
2011; Grundke, Röger, and Helmert 2024). Now we state
the main theorem for optimal planning and provide a coun-
terexample to the theorem for when the OGI assumption is
dropped in example 4 in the Appendix.



Theorem 18 (PLANOPT soundness and completeness con-
ditions). There exists a set Ptrain such that for all GP prob-
lems GP = ⟨Ptrain,Ptest⟩ exhibiting TGIC and OGI, an
optimal planner run on the transformation in Section 3.3 via
the generalised plan π learned from Algorithm 1 with Ptrain
is sound and complete for Ptest for optimal planning.

5 Experiments
We conduct experiments to answer the following ques-
tions. (Q1) How often can planning benchmark problems
be solved by the TGI algorithm (Definition 5)? (Q2) How
does MOOSE compare to existing generalised planners in
synthesis costs? (Q3) How does MOOSE compare to exist-
ing (generalised) planners in instantiation costs? (Q4) How
does MOOSE compare to existing (generalised) planners in
solution quality? (Q5) Can learned MOOSE rules encoded as
axioms help speed up existing optimal planners?

MOOSE Implementation MOOSE is implemented pri-
marily in Python, but make use of the following tools and
planners: the pddl parser (Favorito, Fuggitti, and Muise
2025) for parsing PDDL problems; the SQLite (Hipp
2020) database system for grounding in Algorithm 3 as
planning states can be viewed as databases and rules as
queries (Corrêa et al. 2020; Corrêa and De Giacomo 2024);
(NUMERIC) FAST DOWNWARD’s implementation of A∗

with the (Numeric) LM-cut heuristic (Helmert and Domsh-
lak 2009; Kuroiwa et al. 2022) for generating (numeric) op-
timal plans in Line 8 of Algorithm 1; and SYMK (Speck
et al. 2019; Speck, Seipp, and Torralba 2025) for optimal
planning with MOOSE rules encoded as axioms described in
Section 3.3. We further implement an optimisation for gen-
eralised plan instantiation that tries to fire the previous suc-
cessfully fired rule first during Lines 4 and 6 of Algorithm 3
to reduce grounding effort.

(Q1) How often can planning benchmark problems be
solved by the TGI algorithm (Definition 5)? To answer
this question, we use the STRIPS 1998-2023 International
Planning Competition (IPC) benchmark suite which con-
sists of 38 domains. Inspired by the experimental setup
by Lipovetzky and Geffner (2012) for testing effective width
of planning problems, we test the number of planning prob-
lems that can be solved by the TGI algorithm. For each
problem, we randomise a goal ordering and run FAST
DOWNWARD’s implementation of A∗ search with the LM-
cut heuristic (Helmert and Domshlak 2009) on each goal
atom in order as described in Definition 5 with an 8GB
memory and 7200s runtime limit. The output is then vali-
dated (Howey, Long, and Fox 2004).

In 13 (34.2%) domains, all returned outputs under the re-
source constraints are valid, which suggests the possibility
that these domains exhibit TGI. In 19 (50.0%) domains, at
least half of the returned outputs are valid and in 27 (38.0%)
domains, at least one returned output is valid. In total, of
1184 problems for which an output was returned in the re-
source constraints, 590 (49.8%) were valid. These results
suggest that a non-trivial portion of planning domains can
be solved by the greedy TGI algorithm.

(Q2) How does MOOSE compare to existing generalised
planners in synthesis costs? To answer this question, we
make use of the classical ESHO domains Barman, Ferry,
Gripper, Logistics, Miconic, Rovers, Satellite, and Trans-
port, where path-finding components are removed from
Rovers and Transport. Some but not all domains exhibit the
TGI assumption. Appendix D provides further benchmark
details, distributions of problem object sizes, and number
of training and testing problems. We compare against the
sketch learner (SLEARN) (Drexler, Seipp, and Geffner 2022)
with width hyperparameters in {0, 1, 2}. All approaches are
given a 32GB memory and 12 hour runtime limit for gener-
alised plan synthesis. Each experiment is repeated 5 times.

Figure 3 summarises synthesis metrics. MOOSE com-
pleted synthesis in the given synthesis budgets while
SLEARN did not learn domain knowledge for 3 domains
with more compute across all hyperparameters. The best
SLEARN configuration is faster than MOOSE at synthesising
generalised plans for simpler domains (Ferry, Miconic and
Transport) while MOOSE is faster on 5 out of 8 domains.
However, MOOSE consumes less than 1GB of memory and
uses less memory than SLEARN across all 8 domains.

(Q3) How does MOOSE compare to existing (generalised)
planners in instantiation costs? We use the domains and
problems from the previous question and the additional nu-
meric planning domains NFerry, NMiconic, NMinecraft,
and NTransport. Further details are again provided in Ap-
pendix D. As baselines, we compare against LAMA (Richter
and Westphal 2010), the state-of-the-art standalone satisfic-
ing planner in the 2023 IPC Learning Track and the best
SLEARN configuration for every problem for classical plan-
ning. For numeric planning, we compare against the multi-
queue (M(3h∥3n)) (Chen and Thiébaux 2024b) and the
multi-repetition relaxed plan heuristic with jumping actions
(MRP+HJ) (Scala et al. 2020) configurations of ENHSP.
MOOSE and all baselines are given an 8GB memory and
1800s runtime limit for planning. SLEARN and MOOSE ex-
periments are repeated at most 5 times corresponding to the
repeated 5 trained models from the previous question.

Figure 3 displays the cumulative coverage of all plan-
ners, where a point (x, y) denotes the number y of prob-
lems that can be individually solved in x seconds by a plan-
ner. The dotted black line denotes the number of problems
in each benchmark suite. All 5 seeds of MOOSE solve all
numeric planning and classical testing problems except 2
Logistics seeds that fail on a single problem. In compari-
son from looking at Figure 3, other baseline planners solve
> 20% fewer problems. From Table 4 in Appendix E.1, only
MOOSE seeds can solve every problem for each domain.

(Q4) How does MOOSE compare to existing (generalised)
planners in solution quality? We employ the experiments
from the previous question and compare MOOSE to the
best performing classical and numeric planners LAMA and
MRP+HJ, respectively. Comparisons are illustrated in Fig-
ures 25 and 26 in Appendices E.5 and E.6. MOOSE achieves
higher quality plans on 3 domains than MRP+HJ (NMiconic,
NMinecraft, and NTransport), and worse plan quality on 1
domain (NFerry) for numeric planning. MOOSE achieves



Time (s) Memory (MB)

S
L

E
A

R
N

-0

S
L

E
A

R
N

-1

S
L

E
A

R
N

-2

M
O

O
S

E

S
L

E
A

R
N

-0

S
L

E
A

R
N

-1

S
L

E
A

R
N

-2

M
O

O
S

E

Barman – – – 202 – – – 184
Ferry 21 12 2 9 184 134 76 52
Gripper 3 9 45 10 66 142 391 64
Logistics – – – 71 – – – 73
Miconic 57 1 3 12 381 56 125 52
Rovers – – – 534 – – – 187
Satellite – – 1559 514 – – 7598 82
Transport – 12 12 21 – 114 129 80

0 500
1000
1500

0
50

100
150
200
250
300
350 Moose

mrp+hj
M(3h||3n)

SAT Numeric

0 500
1000
1500

0
100
200
300
400
500
600
700 Moose

LAMA
SLearner

SAT Classic

0 500
1000
1500

0

50

100

150

200

250 Moose
SymK
Scorpion

OPT Classic

Figure 3: Left: average time and memory usage for synthesis (↓). Lowest values are indicated in colour and bold font. Right:
cumulative coverage (y-axis) of planners over time (x-axis) for different planning settings. Higher values are better (↑).

higher quality plans than LAMA on 5 domains (Barman,
Ferry, Miconic, Rovers, Transport), and worse plans on 3 do-
mains (Gripper, Logistics, Satellite) for classical planning.

We further conducted experiments via regressing over
goal conjuncts instead of singleton goals in Algorithm 1.
More rules are synthesised this way leading to higher instan-
tiation costs, but in turn plan quality improved across 7 out
of 8 classical domains. The effects of regressing over goal
conjuncts are presented in greater detail in Appendix F.

(Q5) Can learned MOOSE rules encoded as axioms help
speed up existing optimal planners? For optimal plan-
ning, we compare against SCORPION (Seipp, Keller, and
Helmert 2020), the best standalone optimal planner in the
2023 IPC Optimal Track, and SYMK (Speck, Seipp, and
Torralba 2025). As before, MOOSE and the baselines are
given an 8GB memory and 1800s runtime limit. We note
that SCORPION and SYMK are theoretically optimal plan-
ners while MOOSE is not guaranteed optimal in practice.

MOOSE solves on average 182.8 out of 240 classical test-
ing problems optimally. Although the transformation from
policies learned from finite training data does not guaran-
tee the preservation of optimal plans, the plans output by
MOOSE are empirically optimal. Both MOOSE and Scor-
pion achieve the best (tied) performance on 4 domains out
of 8. We also note that MOOSE matches or outperforms the
base planner SYMK on all domains except Gripper. This ob-
servation suggests that the reduction in search space from
encoding learned policies via axioms usually outweigh the
cost of evaluating such axioms.

6 Related Work, Discussion and Conclusion
Gretton and Thiébaux (2004) employed regression rewriting
for GP in the context of lifted MDPs. Lifted regression was
used to generate relevant features for building decision-tree
policies via inductive logic programming. Their approach
handles optimal, probabilistic planning which in turn means
that the horizons of testing problems are often bounded by
those seen in the training set. LOOM (Illanes and McIlraith
2019) automatically synthesises an abstraction from a sin-
gle planning problem of a GP problem via bagging equiva-
lent objects (Fuentetaja and de la Rosa 2016; Riddle et al.

2016; Dong et al. 2025) into a nondeterministic, quanti-
fied problem. The quantified problem is then solved with
an extension of the FOND planner PRP (Muise, McIlraith,
and Beck 2012) to synthesise generalisable policies via re-
gression which satisfy a policy termination test (Srivastava
et al. 2011). MOOSE takes inspiration from the powerful re-
gression rewriting technique employed in these works, but
differs in the methodology. MOOSE takes a bottom-up ap-
proach of performing ground regression from example plans
to generate ground condition-action pairs that are then lifted
into rules. Gretton and Thiébaux take a top-down approach
of performing lifted regression to generate relevant lifted
features, and LOOM employs ground regression on a top-
down abstraction for synthesising generalised policies.

More generally, MOOSE lies in the class of generalised
planners that synthesise generalised plans by sampling from
training problems (cf. the survey by Celorrio, Segovia-
Aguas, and Jonsson (2019) for more examples). PG3 (Yang
et al. 2022), which performs heuristic search over a space
of generalised policies (Segovia-Aguas, Jiménez, and Jon-
sson 2021; Segovia-Aguas, Celorrio, and Jonsson 2024),
also uses goal regression for handling ‘missed’ states. Gen-
eralised plans synthesised from sampling have been repre-
sented as (deep) policies (Toyer et al. 2018, 2020; Bonet,
Francès, and Geffner 2019; Francès, Bonet, and Geffner
2021; Ståhlberg, Bonet, and Geffner 2022; Chen et al.
2025), heuristic functions (Shen, Trevizan, and Thiébaux
2020; Karia and Srivastava 2021; Chen, Thiébaux, and Tre-
vizan 2024; Corrêa, Pereira, and Seipp 2025) and Python
code (Silver et al. 2024).

In conclusion, we have introduced a new generalised plan-
ner, MOOSE, for both satisficing and optimal planning by
leveraging goal regression and goal independence. We for-
mally classify and define the classes of planning domains
and problems for which MOOSE is sound and complete. Ex-
perimental results show that our approach significantly ad-
vances the state of the art for classical, numeric, and opti-
mal (generalised) planning. Future work involves extending
MOOSE to handle domains requiring transitive closure com-
putations and weaker planning domain assumptions.
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Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2018. Computing Hier-
archical Finite State Controllers With Classical Planning. J. Artif.
Intell. Res., 62: 755–797.
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Drexler, D.; Ståhlberg, S.; Bonet, B.; and Geffner, H. 2024.
Equivalence-Based Abstractions for Learning General Policies. In
KR.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Complexity,
Decidability and Undecidability Results for Domain-Independent
Planning. Artif. Intell., 76: 75–88.
Favorito, M.; Fuggitti, F.; and Muise, C. 2025. pddl. Accessed
from https://github.com/ai-Planning/pddl.
Fikes, R.; Hart, P. E.; and Nilsson, N. J. 1972. Learning and Exe-
cuting Generalized Robot Plans. Artif. Intell., 3(1-3): 251–288.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. J. Artif. Intell. Res., 20.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning General
Planning Policies from Small Examples Without Supervision. In
AAAI.
Fritz, C.; and McIlraith, S. A. 2007. Monitoring Plan Optimality
During Execution. In ICAPS.
Fuentetaja, R.; and de la Rosa, T. 2016. Compiling irrelevant ob-
jects to counters. Special case of creation planning. AI Commun.,
29(3): 435–467.
Garey, M. R.; and Johnson, D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman.
ISBN 0-7167-1044-7.
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Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. ASNets:
Deep Learning for Generalised Planning. J. Artif. Intell. Res., 68:
1–68.
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A Numeric Planning Definitions
We can extend the definition of a planning problem to handle numeric variables, numeric conditions and numeric effects
by making use of the fragment of PDDL 2.1 (Fox and Long 2003) excluding durative actions. In this paper, we consider
the fragment of numeric planning where numeric conditions are restricted to involve one numeric variable per formula with
comparisons in {≥, >,=}, and numeric action effects to additions by a constant value. This fragment is very expressive as it is
undecidable by reduction from an abacus program (Helmert 2002, Theorem 12).
Definition 19 (Abacus Program Numeric Planning Problem). A (lifted) numeric planning problem is a tuple Π =
⟨P,F ,O,A, s0, g⟩ where P is a set of lifted predicates, F is a set of lifted (numeric) functions, O is a set of objects, A is
a set of action schemata, s0 is the initial state, and g the goal condition. Predicates are defined as in STRIPS planning and
functions are similar where each function f ∈ F has a set of argument terms x1, . . . , xnf

where nf ∈ N0 depends on f .
A propositional variable is a predicate whose argument terms are all instantiated with objects, and has a range in {⊤,⊥}. A
numeric variable is a function whose argument terms are all instantiated with objects, and has a range in R. We let Np/Nn

denote the set of propositional/numeric variables for Π given by all possible instantiations of predicates/functions. A state is a
value assignment to all Np and Nn.

A literal is a predicate p or its negation ¬p. A propositional condition is a positive (resp. negative) literal x = ⊤ (resp. ⊥),
and a numeric condition has the form f ⊵ c where f is a function, c ∈ R and ⊵ ∈ {≥, >,=}. A state s satisfies a set of
conditions (i.e. a set of propositional and numeric conditions) if each condition in the set evaluates to true given the values of
the state variables in s. The goal g is a set of conditions.

An action schema a ∈ A is a tuple ⟨var(a), pre(a), add(a), del(a),num eff (a)⟩ where var(a) is a set of parameter terms,
the preconditions pre(a) is a set of conditions, add(a) and del(a) are add and delete lists of predicates as in the classical case,
num eff (a) is a set of numeric conditions of the form f(x1, . . . , xnf

) = f(x1, . . . , xnf
) + c for c ∈ R with argument terms

instantiated with terms or objects from var(a) ∪ O. An action a is applicable in a state s if s satisfies pre(a). In this case,
its successor succ(s, a) is the state where the effects num eff (a) are applied to the numeric variables in s, and propositional
variables are modified in the same way as in the classical case. If a is not applicable in s, we have succ(s, a) = ⊥. The definition
of plan is the same as in the classical case.

Next, we extend the definition of logical regression for classical STRIPS planning to handle numeric conditions and effects
for the class of abacus program numeric problems.
Definition 20 (Abacus Program Numeric Planning Regression). A set of conditions g is regressable over an action a if the
classical conditions are regressable over a as for STRIPS regression, with no restriction for numeric conditions. In this case, we
define the regression of g under a by transforming numeric conditions f ⊵ c to f ⊵ c − v if there is an effect of a of the form
f = f + v, and if there exists any precondition ξ = (f ⊵ c) in a, the associated numeric condition corresponding to f in g is
transformed to ξ.

B Proofs of Theorems
This section proves theorems stated in Section 4.

B.1 Complexity Proofs
Proof Sketch for Proposition 8. Membership follows from PSPACE-completeness of planning for fixed domains (Bylander
1994; Erol, Nau, and Subrahmanian 1995), and hardness by reduction from the Rush Hour problem which has singleton goals
and has been shown to be PSPACE-hard (Hearn and Demaine 2005).

Proof Sketch for Corollary 9. Membership again follows from PSPACE-completeness of planning for fixed domains. Hardness
follows from Proposition 8 as TGI is a special case of SGI.

Proof Sketch for Corollary 12. Membership again follows from PSPACE-completeness of planning for fixed domains. Hard-
ness follows from Corollary 9 as SGI is a special case of OGI.

Proof Sketch for Proposition 10. This follows by noting that the greedy algorithm described in the definition of TGI runs in
polynomial time under the assumption that step (2a) can run in polynomial time.

Proof Sketch for Proposition 11. For NP membership, one guesses the correct ordering of goals after which running the greedy
algorithm is in polynomial time. For NP-hardness, we reduce from the Hamiltonian path problem which is NP-complete (Garey
and Johnson 1979, p. 60). The Hamiltonian path problem asks to find a path on a graph that visits every vertex exactly once. To
encode this as a planning domain, one would require goals of the form visited(x) and actions which traverse a graph but make
each vertex untraversable once it has been visited, such as by deleting initially true clear(x) atoms. Then the Hamiltonian path
problem is equivalent to finding an correct ordering of goals representing (adjacent) vertices to visit.

Proof Sketch for Corollary 13. For NP membership, one guesses the correct ordering of goals after which running the greedy
algorithm is in NP time. For NP-hardness, this follows from the NP-hardness of pSGI which is a special case of pOGI.



B.2 Soundness and Completeness Proofs
Proof Sketch for Proposition 15. Reflexivity, symmetry and transitivity follows from the usage of bijective functions in the
definition of ∼U .

Proof Sketch for Proposition 16. The statement follows by definitions and bijectiveness of f .

Proof Sketch for Theorem 17. We need to show that there exists a set Ptrain such that a MOOSE plan synthesised via Algo-
rithm 1 from Ptrain can solve any generalised planning problem GP = ⟨Ptrain,Ptest⟩ exhibiting TGIC . To show completeness,
it suffices to prove that there exists a finite number of MOOSE rules π, representing all possible optimal plans for singleton
goals in step (2a) of the definition of TGI in Definition 5, which when executed with Algorithm 3 can solve any problem in GP
with singleton goals. Then by the TGI assumption, any arbitrary problem P in P can be solved because execution of π would
achieve the goals P[g] in a monotonic fashion. Soundness follows by the fact that application of rules lifted from regression.
Thus, the execution of Algorithm 3 is sound as if a plan exists and is returned, then the execution of actions in sequence is valid
and achieves the goal, and otherwise if no plan exists, then the algorithm would terminate and not return a plan.

Now, note that the set of possible singleton goals in GP is finite modulo the equivalence relation ∼U restricted to sets
of atoms, as there are a finite number of predicates and instantiations of nonequivalent objects. Furthermore by the TGIC
assumption any optimal plan for any possible singleton goal g has plan length less than C. Thus the set of all possibles sequences
of actions that can be regressed from g is bounded by

∑C
k=0(|A| · (kN ′ +M ′)N )k where

• N = maxa∈A(|var(a)|) is the maximum arity of schemata,
• M is the maximum arity of predicates,
• N ′ = N + |C|, and
• M ′ = M + |C|.

Note that by Proposition 16, it suffices to count the equivalence class of plans under ∼U . This is because modulo ∼U there
are at most (kN ′ +M ′)N possible instantiations of an action where there are at most kN ′ + M ′ possible objects across all
actions in a length-k plan and the singleton goal under ∼U . By a similar argument, there are |P| ·M ′M possible singleton goal
instantiations, and hence it takes a finite number of up to n =

∑C
k=0(|A| · (kN ′ +M ′)N )k · (|P| ·M ′M ) different problems to

synthesise a general policy for GP.

Proof Sketch for Corollary 12. NP membership follows by definition of OGI, more specifically the nondeterministic algorithm
defined within. NP-hardness follows by the NP-hardness of SGI which can be viewed as a general case of OGI.

Proof Sketch for Theorem 18. Completeness follows from the completeness of rules as discussed in Theorem 17. To show
soundness for optimal planning, we note that given enough training problems, bounded by n =

∑C
k=0(|A| · (kN ′ +M ′)N )k ·

(|P| ·M ′M ) from the previous theorem, learned rules do not throw away any optimal actions at every state. Then the proof
follows from the definition of OGI.

Example 4 (Theorem 18 counterexample without the OGI assumption). A counterexample to the previous theorem for when
the OGI assumption is dropped occurs if we can find a case where achieving a singleton goal for a TGI problem suboptimally
is necessary to achieve optimality for the whole problem. In the planning problem illustrated by the state space in Figure 4 with
goal {g1, g2}, an optimal plan to either g1 or g2 has plan length 2 and the greedy algorithm in Definition 5 of TGI returns a
plan of length 4. However, the optimal plan has length 3.

g1

g2

g1, g2g1, g2

Figure 4: A planning problem illustrating the necessity of the OGI assumption for learning provably optimal policies in Theo-
rem 18. Nodes represent states and arrows represent transitions between states.



C True Goal Independence Experiments
Results for the Agricola domain are omitted as no problem could be solved in the given resource limits.

Domain OOR Inval Val Val (%)

barman 1 23 16 41.0
blocks 0 35 0 0.0
childsnack 5 0 15 100.0
data 15 0 5 100.0
depot 1 14 7 33.3
driverlog 0 18 2 10.0
elevators 10 0 40 100.0
floortile 0 40 0 0.0
freecell 31 0 49 100.0
ged 1 19 0 0.0
grid 0 3 2 40.0
gripper 0 0 20 100.0
hiking 17 0 3 100.0
logistics 5 0 58 100.0
miconic 0 0 150 100.0
movie 0 30 0 0.0
mprime 11 0 24 100.0
mystery 8 4 18 81.8
nomystery 0 20 0 0.0
parking 0 40 0 0.0
pegsol 0 50 0 0.0
pipesworld 37 51 12 19.1
rovers 0 0 40 100.0
satellite 6 15 15 50.0
scanalyzer 0 46 4 8.0
snake 0 20 0 0.0
sokoban 0 48 2 4.0
spider 11 9 0 0.0
storage 0 27 3 10.0
termes 17 3 0 0.0
tetris 0 20 0 0.0
thoughtful 15 1 4 80.0
tidybot 1 2 17 89.5
tpp 8 0 22 100.0
transport 44 0 26 100.0
visitall 18 0 22 100.0
woodworking 0 48 2 4.0
zenotravel 0 8 12 60.0

Table 2: Results for the procedure described in (Q1) in Section 5. OOR denotes that planning did not complete in the given
resources. Inval denotes that a returned plan is invalid or that the procedure encountered a deadend. Val denotes that a returned
plan is valid. Val (%) is computed by 100 Val

Val+Inval .



D Additional Generalised Planning Benchmark Details
Table 3 displays the ranges of number of objects present in training and testing problems for each domain. The Ferry, Mi-
conic, Rovers, Satellite, and Transport domains and problems are taken from the 2023 IPC Learning Track (Taitler et al. 2024)
with modifications that remove the path-finding components of Rovers and Transport, and that increase the number of objects
in Miconic problems. Barman, Gripper and Logistics have newly introduced training and testing problem splits for gener-
alised planning. The NFerry, NMiconic, and NTransport domains are taken from (Chen and Thiébaux 2024a) with path-finding
removed from NTransport. NMinecraft originates from the Minecraft Pogo Stick domain (Benyamin et al. 2024) while we
introduced training and testing problem splits for generalised planning.

Train Test

Domain Obj. Types Min Max Min Max

Barman Σ 16 27 21 853

cocktail 3 7 4 393
dispenser 3 3 3 30
hand 2 2 2 2
ingredient 3 3 3 30
level 3 3 3 3
shaker 1 1 1 1
shot 1 8 5 394

Ferry Σ 3 8 7 1461

car 1 2 2 974
location 2 6 5 487

Gripper Σ 3 5 11 48500

balls 3 5 11 48500

Logistics Σ 29 29 10 1260

airplane 3 3 1 64
city 3 3 1 64
location 15 15 2 960
package 5 5 5 108
truck 3 3 1 64

Miconic Σ 3 11 5 1950

floor 2 7 4 980
passenger 1 4 1 970

Rovers Σ 10 36 12 596

camera 1 4 1 99
lander 1 1 1 1
mode 3 3 3 3
objective 1 10 1 236
rover 1 4 1 30
store 1 4 1 30
waypoint 2 10 4 197

Satellite Σ 5 43 11 402

direction 2 10 4 98
instrument 1 20 3 195
mode 1 3 1 10
satellite 1 10 3 99

Transport Σ 6 17 12 354

location 2 7 5 99
package 1 4 1 194
size 2 3 3 11
vehicle 1 3 3 50

(a) Classical planning.

Train Test

Domain Objects Min Max Min Max

NFerry Σ 7 9 11 1465

car 1 2 2 974
location 2 3 5 487

NMiconic Σ 7 15 9 685

floor 2 7 4 196
passenger 1 4 1 485

NMinecraft Σ 5 5 15 2100

cell 4 4 11 1800
pogo sticks 1 1 4 300

NTransport Σ 5 14 13 605

capacity 1 4 4 262
location 2 4 5 99
package 1 4 1 194
vehicle 1 2 3 50

(b) Numeric planning.

Table 3: Training and testing object distributions.



E Additional Generalised Planning Results
E.1 Coverage Tables

Domain M
(3
h
∥3

n
)

M
R

P
+

H
J

M
O

O
S

E

NFerry 60 61 90.0
NMiconic 63 71 90.0
NMinecraft 30 66 90.0
NTransport 44 64 90.0∑

(360) 197 262 360.0

(a) Satisficing numeric planning.

Domain S
L
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N

-0

S
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E
A

R
N

-1

S
L

E
A

R
N

-2

L
A

M
A

M
O

O
S

E

Barman 0.0 0.0 0.0 49 90.0
Ferry 15.0 67.0 60.0 69 90.0
Gripper 59.6 50.8 33.0 65 90.0
Logistics 0.0 0.0 0.0 77 89.6
Miconic 68.8 72.6 67.8 77 90.0
Rovers 0.0 0.0 0.0 66 90.0
Satellite 0.0 29.2 34.6 89 90.0
Transport 0.0 63.0 46.8 66 90.0∑

(720) 143.4 282.6 242.2 558 719.6

(b) Satisficing classical planning.

Domain B
lin

d

L
M

C
U

T

S
C

O
R

P
IO

N

S
Y

M
K

M
O

O
S

E

Barman 0 0 0 12 24.6
Ferry 10 18 17 18 30.0
Gripper 9 8 7 30 27.0
Logistics 8 15 22 10 15.0
Miconic 30 30 30 30 30.0
Rovers 15 17 18 20 20.0
Satellite 12 22 26 21 21.4
Transport 9 9 20 13 15.0∑

(240) 93 119 140 154 183.0

(c) Optimal classical planning.

Table 4: Planning coverage (↑). The best score for each domain is highlighted in colour and bold. Domains have 90 (resp. 30)
problems each for satisficing (resp. optimal) planning.

E.2 Satisficing Numeric Planning
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Figure 5: Average time (left) and plan length (right) of planners across solved problems for Numeric Ferry. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 6: Average time (left) and plan length (right) of planners across solved problems for Numeric Miconic. Planning
problem difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only
points for which all seeds solve the problem are displayed.
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Figure 7: Average time (left) and plan length (right) of planners across solved problems for Numeric Minecraft. Planning
problem difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only
points for which all seeds solve the problem are displayed.
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Figure 8: Average time (left) and plan length (right) of planners across solved problems for Numeric Transport. Planning
problem difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only
points for which all seeds solve the problem are displayed.

E.3 Satisficing Classical Planning
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Figure 9: Average time (left) and plan length (right) of planners across solved problems for Barman. Planning problem dif-
ficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 10: Average time (left) and plan length (right) of planners across solved problems for Ferry. Planning problem difficulty
increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for which all
seeds solve the problem are displayed.
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Figure 11: Average time (left) and plan length (right) of planners across solved problems for Gripper. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 12: Average time (left) and plan length (right) of planners across solved problems for Logistics. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 13: Average time (left) and plan length (right) of planners across solved problems for Miconic. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 14: Average time (left) and plan length (right) of planners across solved problems for Rovers. Planning problem difficulty
increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for which all
seeds solve the problem are displayed.
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Figure 15: Average time (left) and plan length (right) of planners across solved problems for Satellite. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 16: Average time (left) and plan length (right) of planners across solved problems for Transport. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.

E.4 Optimal Classical Planning
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Figure 17: Average time (left) and plan length (right) of planners across solved problems for Barman. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 18: Average time (left) and plan length (right) of planners across solved problems for Ferry. Planning problem difficulty
increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for which all
seeds solve the problem are displayed.
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Figure 19: Average time (left) and plan length (right) of planners across solved problems for Gripper. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 20: Average time (left) and plan length (right) of planners across solved problems for Logistics. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 21: Average time (left) and plan length (right) of planners across solved problems for Miconic. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 22: Average time (left) and plan length (right) of planners across solved problems for Rovers. Planning problem difficulty
increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for which all
seeds solve the problem are displayed.
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Figure 23: Average time (left) and plan length (right) of planners across solved problems for Satellite. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.
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Figure 24: Average time (left) and plan length (right) of planners across solved problems for Transport. Planning problem
difficulty increases across the x-axis. Lower y-axis values are better (↓). Note the y-axis log scale for runtime. Only points for
which all seeds solve the problem are displayed.

E.5 MOOSE vs. LAMA on Solution Quality
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Figure 25: Plot comparisons of expanded nodes of LAMA (y-axis) and MOOSE (x-axis) for different classical planning domains.
A point (x, y) represents the metric of the models indicated on the x and y axis on the domain. The number in the brackets
next to each model indicates how many planning problems the model returned a higher quality plan than the model on the other
axis. Points on the top left (resp. bottom right) triangle favour MOOSE (resp. LAMA).
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Figure 26: Plot comparisons of expanded nodes of the MRP+HJ configuration of ENHSP (y-axis) and MOOSE (x-axis) for
different classical planning domains. A point (x, y) represents the metric of the models indicated on the x and y axis on the
domain. The number in the brackets next to each model indicates how many planning problems the model returned a higher
quality plan than the model on the other axis. Points on the top left (resp. bottom right) triangle favour MOOSE (resp. MRP+HJ).

F Conjunctive Goal Regression
In this section, we generalise the MOOSE algorithms by regressing over subsets of goals rather than singleton goals for synthe-
sising more rules. We then conduct experiments and analyse the effect of regressing over subsets of goals on the 3 metrics of
synthesis cost, instantiation cost, and plan quality.

F.1 Generalised MOOSE Algorithms
The updated synthesis algorithm is presented in Algorithm 4 which modifies Algorithm 1. The changes are highlighted in blue
and lie in Lines 6 to 9 and Line 11. The subroutine extractRules′ is the same as extractRules in Algorithm 2 with the changes
where

(1) we modify the type of the precedence ranking function from R → N to R → N × N and Line 4 is then changed to
π ← π ∪ {(r, (− |g| , |α⃗| − i+ 1))}, and

(2) rules where the state condition and goal condition have a non-empty intersection are pruned.

Furthermore, Line 4 in Algorithm 3 now iterates over r ∈ π in ascending precedence values in lexicographical order.
For example, we would have (−2, 3) queried before (−2, 4) which in turn is queried before (−1, 2). The intuition here uses
the triangle inequality where optimal plans for subgoals may be higher quality than achieving individual goals optimally in
sequence. Note however that this is not always the case, as two goals may be conflicting when trying to achieve them both as
opposed to achieving each goal individually. An example is trying to place 2 objects in a box but the box can only fit one object.

Algorithm 4: MOOSE Program Synthesis via k-Subset Goal Regression

Input: Training problems Ptrain = P(1), . . . ,P(nt), size of regressed goals nr , and number of goal permutations np ∈ N (default: 3).
Output: MOOSE program π.

1 π ← ∅
2 for i = 1, . . . , nt do
3 ng ← |P(i)[g]|
4 for j = 1, . . . ,min(np, ng!) do
5 s← P(i)[s0] ; g⃗ ← newPermutation(P(i)[g])
6 for l = 1, . . . , nr do
7 u← largest integer of the form 1 + k · l such that u ≤ ng − k + 1
8 for k = 1, 1 + nr, . . . , u do
9 g′ ←

{
g⃗k, . . . , g⃗min(k+nr−1,ng)

}
10 α⃗← optimalPlan(P

(i)

s,g′)

11 if α⃗ = ⊥ then continue
12 π ← π ∪ extractRules′(α⃗, g′)
13 s← succ(s, α⃗)

14 return π



F.2 Experiments
We perform experiments on the classical planning benchmarks with nr ∈ {1, 2, 3}, where nr = 1 corresponds to the algorithms
presented in the main paper, over 5 repeats. Ferry results for nr = 3 are omitted as no training problem exhibited more than 2
goal atoms. We report results concerning the 3 metrics of synthesis cost, instantiation cost, and solution quality.

Synthesis Cost Synthesis costs are summarised in Table 5. We observe that increasing nr results in higher synthesis costs
and the size of the synthesised generalised plan (# learned rules).

Time (s) Memory (MB) # Learned Rules

Domain 1 2 3 1 2 3 1 2 3

Barman 202 349 468 184 160 164 167 224 222
Ferry 9 14 − 52 59 − 5 37 −
Gripper 10 10 12 64 65 52 4 10 19
Logistics 71 113 159 73 113 148 90 980 2187
Miconic 12 44 26 52 150 54 11 62 79
Rovers 534 884 1061 187 209 317 88 2450 8481
Satellite 514 740 951 82 142 194 13 252 1309
Transport 21 31 43 80 84 59 5 82 184

Table 5: Average runtime and memory usage (↓) for synthesis, and number of learned rules over different number of nr ∈
{1, 2, 3} in Algorithm 4. Ferry results for nr = 3 are omitted as no training problem exhibited more than 2 goal atoms.

Instantiation Cost Instantiation costs are illustrated in Figure 27. We observe that increasing nr results in higher instantiation
costs, sometimes by more than an order of magnitude for each nr increment. This is due to the increase in the number of
synthesised rules and the associated costs of querying such rules.
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Figure 27: Average time in seconds in log scale (↓) of different nr configurations across solved problems over different domains.
Planning problem difficulty increases across the x-axis. Only points for which all seeds solve the problem are displayed.

Solution Quality Solution quality is aggregated in Table 6 by summing the plan length over problems that are solved by each
nr configuration. We observe that in all domains except Barman that increasing nr above 1 improves solution quality. However,
there is minimal change between nr = 2 and nr = 3.

Domain 1 2 3

Barman 118778 121153 −2.0% 121167 −2.0%
Ferry 77760 70252 +9.7% 70247 +9.7%
Gripper 70800 53100 +25.0% 53190 +24.9%
Logistics 18224 18017 +1.1% 17967 +1.4%
Miconic 6293 6158 +2.1% 6172 +1.9%
Rovers 2027 1902 +6.2% 1888 +6.9%
Satellite 21923 18080 +17.5% 17862 +18.5%
Transport 14672 13586 +7.4% 13671 +6.8%

Table 6: Average plan length (↓) of different nr configurations across solved problems over different domains. The percentages
under the nr = 2 and nr = 3 columns indicate performance improvement relative to nr = 1.


