

Satisficing and Optimal Generalised Planning via Goal Regression

Dillon Z. Chen

Till Hofmann

Toryn Q. Klassen

Sheila A. McIlraith

PDDL (STRIPS) Planning

Sequential decision making problems over formally defined models

A **domain** is a set of **first-order predicates** and **action schemata** $\mathcal{D} = \langle \mathcal{P}, \mathcal{A} \rangle$

A **problem** is a **domain**, **initial state**, **goal cond.** and **finite set of objects** $\mathcal{P} = \langle \mathcal{D}, s^0, g, \mathcal{O} \rangle$

A **plan** α is **sequence of actions** that progresses s^0 to a state satisfying g

PDDL models exhibit
rich *structure* to help
generate solutions
efficiently

PDDL Planning: Household Robot Example

Domain

```
(:action move
  :parameters  (?from ?to)
  :precondition (and (atRobot ?from))
  :effect (and (atRobot ?to)
    (not (atRobot ?from))))
```

action schema

```
(:action pickUp
  :parameters  (?obj ?loc)
  :precondition (and (at ?obj ?loc)
    (atRobot ?loc) (handFree))
  :effect (and (holding ?obj) (not (at ?obj ?loc))
    (not (handFree))))
```

predicate

```
(:action putDown
  :parameters  (?obj ?loc)
  :precondition (and (holding ?obj) (atRobot ?loc))
  :effect (and (at ?obj ?loc) (handFree)
    (not (holding ?obj))))
```

Problem

```
(:objects dog ball apple mango cake)
```

objects

```
(:init
  (hungry dog)
  (at mango bedroom)
  (at cake livingRoom)
  (at apple kitchen)
  (at ball backyard)
  (atRobot backyard)
  )
```

initial state

```
(:goal
  (at cake kitchen)
  (at ball storageRoom)
  )
```

goal condition

Problem Statement: Generalised Planning (GP)

Generalised planning problem:

- a domain \mathcal{D}
- training planning problems \mathcal{P}_{train} from \mathcal{D}
- testing planning problems \mathcal{P}_{test} from \mathcal{D}

Generalised plan: is a *program* π that

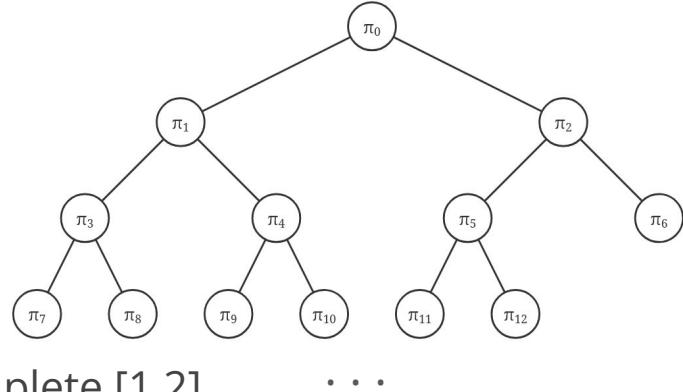
- is *synthesised* from \mathcal{P}_{train}
- can be *instantiated* to solve problems in \mathcal{P}_{test}

generalisation in sequential decision-making problems across:

- unseen states
- unseen goals
- arbitrary number of objects

Generalised Planning is Hard and Interesting!

- Space of generalised plans is huge
- Some models of GP problems are EXPSPACE-complete [1,2]
- Generalisation is difficult and a core problem of AI



Current Approaches

- Deep/machine learning approaches
 - imitation learning
 - e.g. GNNs, Transformers
 - ✓ fast to synthesise policies
 - ✗ low expressivity, not interpretable
- Symbolic/abstraction approaches
 - theorem proving
 - e.g. QNP, ASP
 - ✗ slow to synthesise policies
 - ✓ expressive, interpretable

Our approach: Goal Regression

Goal regression [3, 4] computes the **minimal and sufficient**

condition for achieving a goal g via an action a

⇒ ✓ efficient policy synthesis

⇒ ✓ expressive and interpretable policies

- PDDL STRIPS goal regression is defined by

$$\text{regr}(g, a) = (g \setminus \text{add}(a)) \cup \text{pre}(a)$$

[3] Richard Fikes, Peter E. Hart, Nils J. Nilsson: Learning and Executing Generalized Robot Plans. *Artif. Intell.* 3(1-3): 251-288 (1972)

[4] Raymond Reiter: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression. *Artificial and Mathematical Theory of Computation* 1991

Methodology: (1) Synthesising GenPlans via Goal Regression

Synthesise a GPlan π in the form of a set of first-order rules from \mathcal{P}_{train} by

1. **compute optimal plans** $\{a_1, \dots, a_n\}$ for single goal atoms in some order $\{g_1, \dots, g_n\}$ for each training problem $P \in \mathcal{P}_{train}$
2. **perform goal regression** on goals g_i with corresponding plans π_i to get a set of partial-state, macro-action pairs $\langle \sigma_i, a_i \rangle$ where $a_i = a_1, \dots, a_q$
3. **lift** the set of pairs $\langle \sigma_i, a_i \rangle$ and goals g_i into a set of first-order rules

$$\begin{array}{c}
 \text{state condition} \quad \text{goal condition} \quad \text{actions} \\
 \{ \exists \{X\} \wedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \wedge_{j=1, \dots, n} p_j^g(X_j^g) \rightarrow \{ a_1(X_1^a), \dots, a_q(X_q^a) \}
 \end{array}$$

transportation domain

STRIPS Domain

```
putDown
var: ?obj, ?loc
pre: atRobot(?loc), holding(?obj)
add: at(?obj, ?loc), handFree()
del: holding(?obj)
```

```
move
var: ?from, ?to
pre: atRobot(?from)
add: atRobot(?to)
del: atRobot(?from)
```

...

STRIPS Domain

```
putDown
var: ?obj, ?loc
pre: atRobot(?loc), holding(?obj)
add: at(?obj, ?loc), handFree()
del: holding(?obj)
```

```
move
var: ?from, ?to
pre: atRobot(?from)
add: atRobot(?to)
del: atRobot(?from)
```

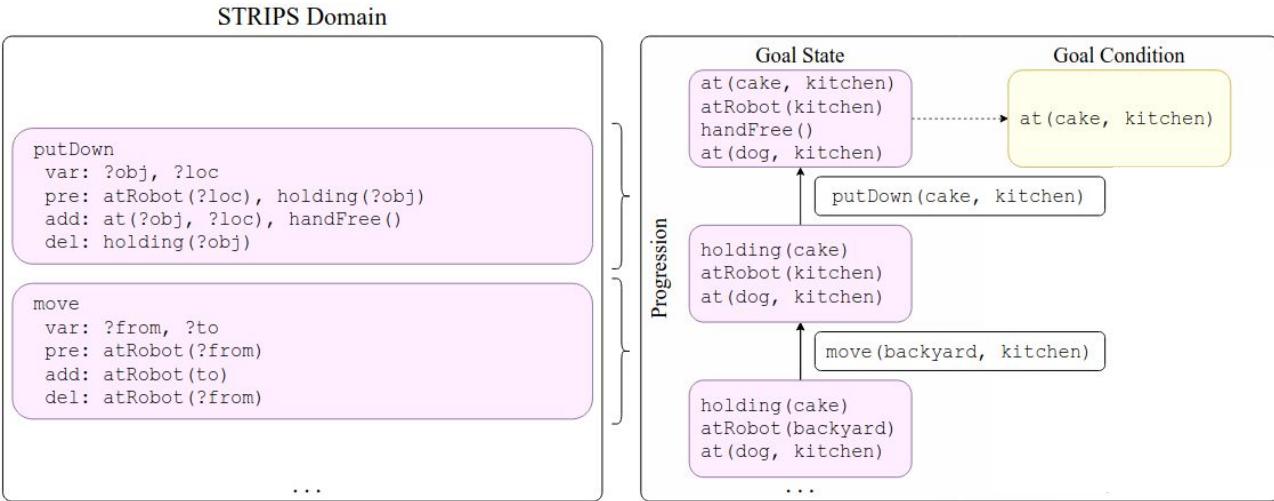
...

Goal Condition
at(cake, kitchen)

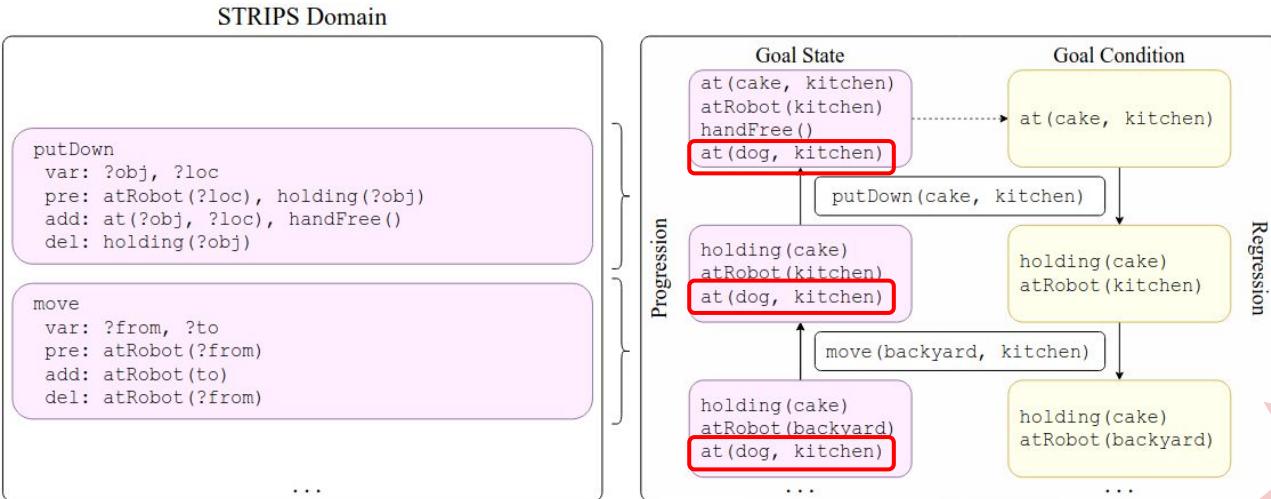
holding(cake)
atRobot(backyard)
at(dog, kitchen)

...

initial state
and
goal condition



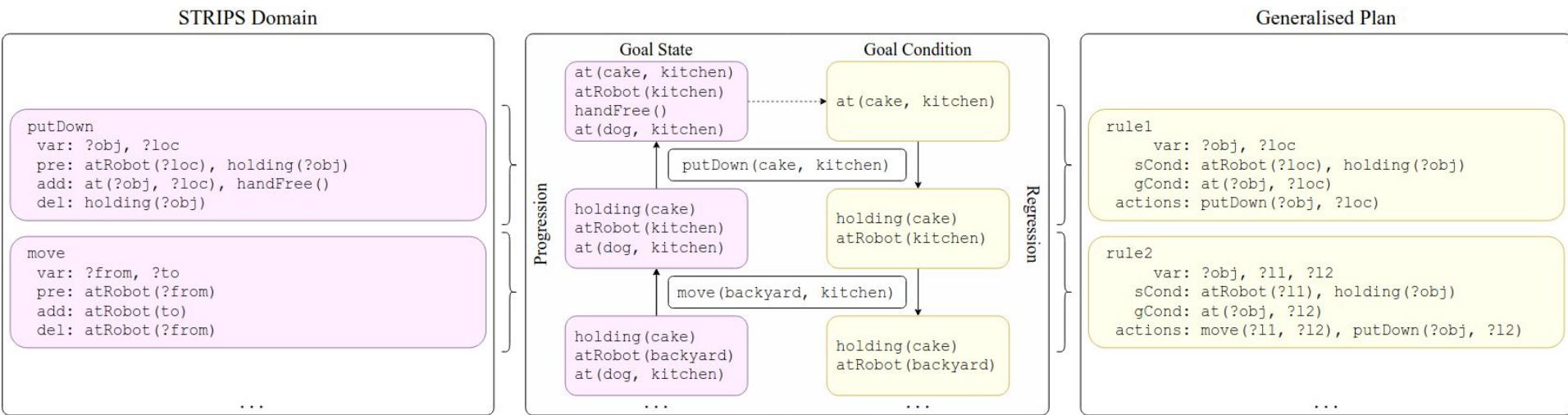
find a plan and
progress the
initial state



regress the goal
with the plan

regression deems
at (dog, kitchen)
irrelevant

lift the
regressed states
into rules



Methodology: (2) Instantiating GenPlans via Database Algorithms

Instantiate a GPlan π on a problem $P \in \mathcal{P}_{test}$ by treating it as a policy

1. set $s = s_0$ and **while** the goal has not been achieved, repeat the following steps
2. **ground** a lifted rule where $\wedge_{i=1, \dots, m} p_i^s(X_i^s)$ holds in s and $\wedge_{j=1, \dots, n} p_j^g(X_j^g)$ holds in $g \setminus s$
3. **apply** corresponding sequence of actions $a_1(X_1^a), \dots, a_q(X_q^a)$ on s

speed
focused GP

ground with
first-order query
algorithms

⇒ MOOSE Generalised Planner

1. *Goal regression* for generalised plan synthesis
2. *Database algorithms* for policy execution
3. ...

Experimental Results

Benchmarks: HUGE numbers of objects

	Max Training #Objects	Max Testing #Objects
Barman	27	853
Ferry	8	1461
Gripper	5	48500
Logistics	29	1260
Miconic	11	1950
Rovers	36	596
Satellite	43	402
Transport	17	354

Synthesis Experiments

- Compare against 3 *configurations* of the Sketch Learner [5] generalised planner
- 32 GB memory
- 12 hour runtime limit
- 5 repeats per domain

Synthesis Results

Average time and memory usage (↓)

MOOSE uses
<1GB memory
and synthesises
GenPlans for all
domains

	Time (s)				Memory (MB)			
	SLEARN-0	SLEARN-1	SLEARN-2	MOOSE	SLEARN-0	SLEARN-1	SLEARN-2	MOOSE
Barman	-	-	-	202	-	-	-	184
Ferry	21	12	2	9	184	134	76	52
Gripper	3	9	45	10	66	142	391	64
Logistics	-	-	-	71	-	-	-	73
Miconic	57	1	3	12	381	56	125	52
Rovers	-	-	-	534	-	-	-	187
Satellite	-	-	1559	514	-	-	7598	82
Transport	-	12	12	21	-	114	129	80

Satisficing Planning Experiments

- 8 classical domains and 4 numeric domains
- Compare against:
 - Classical planners: Sketch Learner [5], LAMA [6]
 - Numeric planners: ENHSP(mrp+hj) [7], ENHSP(M(3h | 3n) [8]
- 8 GB memory
- 30 minute runtime limit
- 5 repeats per problem

[5] Dominik Drexler, Jendrik Seipp, Hector Geffner: Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width. ICAPS 2022

[6] Silvia Richter, Matthias Westphal: The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks. J. Artif. Intell. Res. 39: 127-177 (2010)

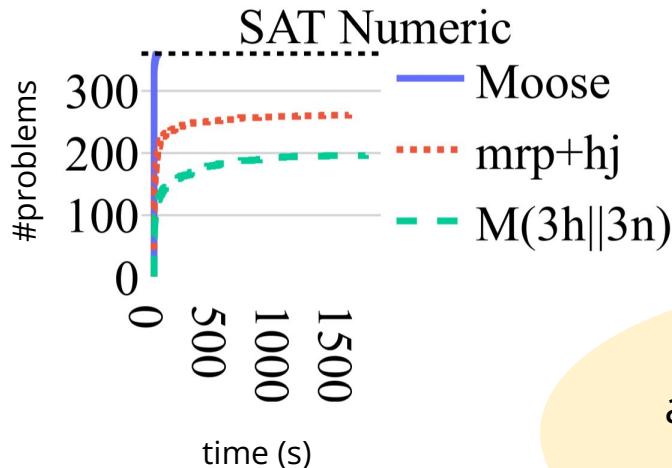
[7] Enrico Scala, Alessandro Saetti, Ivan Serina, Alfonso Emilio Gerevini: Search-Guidance Mechanisms for Numeric Planning Through Subgoal Relaxation. ICAPS 2020

[8] Dillon Z. Chen, Sylvie Thiébaut: Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning. SOCS 2024

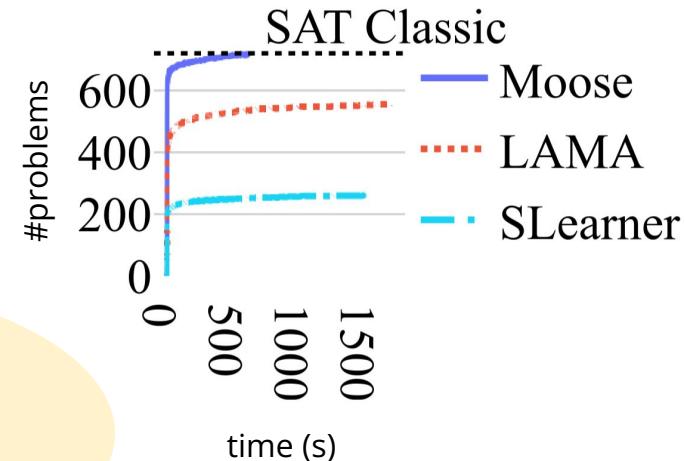
Satisficing Planning Results

Cumulative coverage (\uparrow)

The number of problems (y -axis) that a planner solves within n seconds (x -axis)



MOOSE solves
almost all problems
much faster than
the baselines



We're not done yet!

Methodology: (3) Instantiating GenPlans via Search

Instantiate a GPlan π on a problem $P \in \mathcal{P}_{test}$ with search space pruning via PDDL axioms

1. encode axioms that **detect unachieved goals**

$$p_{ug}(X) :- p_g(X) \wedge \neg p(X)$$

quality
focused GP

2. encode axioms that **restrict action application** based on learned rules

$$(\alpha_1)_{\pi}(X) :- \wedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \wedge_{j=1, \dots, n} (p_j^g)_{ug}(X_j^g)$$

3. **feed transformed PDDL problem** into a planner that supports axioms

Returns optimal plans under certain conditions

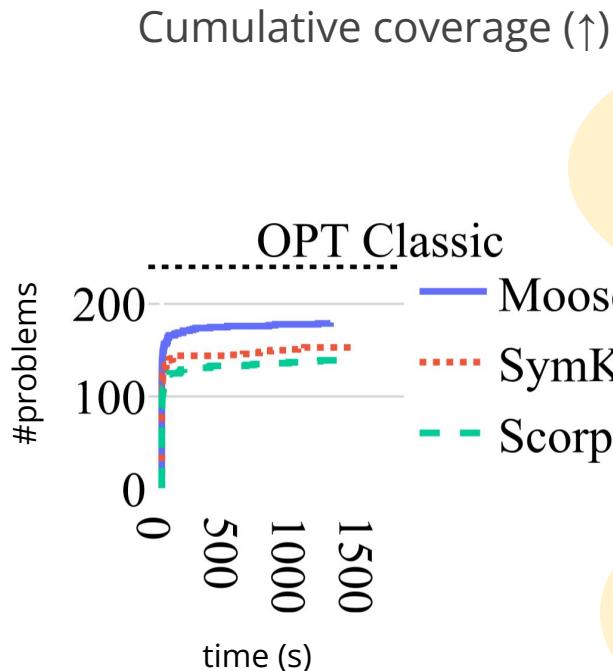
⇒ MOOSE Generalised Planner

1. *Goal regression* for generalised plan synthesis
2. *Database algorithms* for policy execution
3. *PDDL axioms* for search space pruning

Optimal Planning Experiments

- 8 classical domains
- use SymK [9] as downstream planner that supports PDDL axioms
- Compare against SymK without axioms and Scorpion [10]
- 8 GB memory
- 30 minute runtime limit
- 5 repeats per problem

Optimal Planning Results



MOOSE solves more problems optimally in total

Coverage table by domain (↑)

Domain	SCORPION	SYMK	MOOSE
Barman	0	12	24.6
Ferry	17	18	30.0
Gripper	7	30	27.0
Logistics	22	10	15.0
Miconic	30	30	30.0
Rovers	18	20	20.0
Satellite	26	21	21.4
Transport	20	13	15.0
\sum (240)		140	154 183.0

MOOSE usually improves upon its base planner (SymK)

Limitations and Future Work

- **Problem:** non-decomposable goals
 - **Solution:** learn goal orderings
- **Problem:** path-finding
 - **Solution:** transitive closure features, or search
- **Problem:** a posteriori policy termination
 - **Solution:** Sieve algorithm

Summary

Goal regression elicits powerful generalisation over structured models

Problem

Synthesise generalised plans for solving families of planning problems

Method

Synthesise via **goal regression**
 → improve synthesis efficiency
 Instantiate via **database query algorithms**
 → improve planning speed
 Instantiate via **encoding rules as pruning axioms**
 → improve solution quality

Theory

See paper for soundness and completeness theorems

Experiments

Improvements on the 3 metrics of **synthesis cost**, **instantiation cost**, and **solution quality**

$$\text{regr}(g, a) = (g \setminus \text{add}(a)) \cup \text{pre}(a)$$

$$\{\exists \{X\} \bigwedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \bigwedge_{j=1, \dots, n} p_j^g(X_j^g) \rightarrow a_1(X_1^a), \dots, a_q(X_q^a)\}$$

$$(a_i)_\pi(X) \doteq \bigwedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \bigwedge_{j=1, \dots, n} (p_j^g)_{ug}(X_j^g)$$

	Time (s)				Memory (MB)			
	SLEARN-0	SLEARN-1	SLEARN-2	MOOSE	SLEARN-0	SLEARN-1	SLEARN-2	MOOSE
Barman	-	-	-	202	-	-	-	184
Ferry	21	12	2	9	184	134	76	52
Gripper	3	9	45	10	66	142	391	64
Logistics	-	-	-	71	-	-	-	73
Miconic	57	1	3	12	381	56	125	52
Rovers	-	-	-	534	-	-	-	187
Satellite	-	-	1559	514	-	-	7598	82
Transport	-	12	12	21	-	114	129	80

