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PDDL (STRIPS) Planning

Sequential decision making problems over formally defined models

A domain is a set of first-order predicates and action schemata D = 〈P, A〉

A problem is a domain, initial state, goal cond. and finite set of objects P = 〈D, s0, g, O〉

A plan α is sequence of actions that progresses s0 to a state satisfying g

PDDL models exhibit 
rich structure to help 
generate solutions 

efficiently
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PDDL Planning: Household Robot Example

(:action move

   :parameters  (?from ?to)

   :precondition (and (atRobot ?from))

   :effect (and  (atRobot ?to) 

      (not (atRobot ?from))))

(:action pickUp

   :parameters (?obj ?loc)

   :precondition  (and (at ?obj ?loc) 

      (atRobot ?loc) (handFree))

   :effect (and (holding ?obj) (not (at ?obj ?loc))         

      (not (handFree))))

(:action putDown

   :parameters (?obj ?loc)

   :precondition (and (holding ?obj) (atRobot ?loc))

   :effect (and (at ?obj ?loc) (handFree) 

      (not (holding ?obj))))

...

(:objects dog ball apple mango cake)

(:init 

  (hungry dog) 

  (at mango bedroom) 

  (at cake livingRoom) 

  (at apple kitchen)

  (at ball backyard)

  (atRobot backyard)

)

(:goal 

  (at cake kitchen)

  (at ball storageRoom)

)

Domain Problem

action schema

predicate

objects

initial state

goal condition
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Problem Statement: Generalised Planning (GP)

generalisation in sequential 
decision-making problems across:

● unseen states
● unseen goals
● arbitrary number of objects

Generalised planning problem:

● a domain D
● training planning problems Ptrain from D
● testing planning problems Ptest  from D

Generalised plan: is a program π that 

● is synthesised from Ptrain

● can be instantiated to solve problems in Ptest
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Generalised Planning is Hard and Interesting!

● Space of generalised plans is huge

● Some models of GP problems are EXPSPACE-complete [1,2]

● Generalisation is difficult and a core problem of AI

[1] Siddharth Srivastava, Shlomo Zilberstein, Neil Immerman, Hector Geffner: Qualitative Numeric Planning. AAAI 2011

[2] Blai Bonet, Hector Geffner: Qualitative Numeric Planning: Reductions and Complexity. J. Artif. Intell. Res. 69: 923-961 (2020)

. . .
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Current Approaches

● Deep/machine learning approaches

○ imitation learning

○ e.g. GNNs, Transformers

○ ✔ fast to synthesise policies

○ ✗ low expressivity, not interpretable

● Symbolic/abstraction approaches

○ theorem proving

○ e.g. QNP, ASP

○ ✗ slow to synthesise policies

○ ✔ expressive, interpretable
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Our approach: Goal Regression

Goal regression [3, 4] computes the minimal and sufficient 

condition for achieving a goal g via an action a

⇒ ✔ efficient policy synthesis

⇒ ✔ expressive and interpretable policies

● PDDL STRIPS goal regression is defined by

regr(g, a) = (g \ add(a)) ∪ pre(a)
[3] Richard Fikes, Peter E. Hart, Nils J. Nilsson: Learning and Executing Generalized Robot Plans. Artif. Intell. 3(1-3): 251-288 (1972)
[4] Raymond Reiter: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression. Artificial and Mathematical Theory of Computation 1991
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Synthesise a GPlan π in the form of a set of first-order rules from Ptrain by

1. compute optimal plans {ɑ1 , ..., ɑn} for single goal atoms in some order {g1 ,..., gn} 

for each training problem P ∈ Ptrain

2. perform goal regression on goals gi with corresponding plans πi to get a set of 

partial-state, macro-action pairs 〈σi , ɑi〉 where ɑi = α1, …, αq

3. lift the set of pairs 〈σi , ɑi〉 and goals gi into a set of first-order rules 

{∃{X} ⋀i=1,...,mpi
s(Xi

s) ∧ ⋀j=1,...,n pj
g(Xj

g) → α1(X1
a), …, αq(Xq

a)}

Methodology: (1) Synthesising GenPlans via Goal Regression

state condition goal condition actions
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transportation 
domain
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initial state
and

goal condition



Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Satisficing and Optimal Generalised Planning via Goal Regression AAAI’26Chen, D.; Hofmann, T.; Klassen, T.; McIlraith, S.

find a plan and 
progress the 
initial state
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regress the goal 
with the plan

regression deems 
at(dog, kitchen) 

irrelevant
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lift the 
regressed states 

into rules
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Methodology: (2) Instantiating GenPlans via Database Algorithms

Instantiate a GPlan π on a problem P ∈ Ptest by treating it as a policy

1. set s = s0 and while the goal has not been achieved, repeat the following steps

2. ground a lifted rule where ⋀i=1,...,mpi
s(Xi

s) holds in s and ⋀j=1,...,n pj
g(Xj

g) holds in g \ s

3. apply corresponding sequence of actions α1(X1
a), …, αq(Xq

a) on s

ground with 
first-order query 

algorithms

speed 
focused GP
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⇒ MOOSE Generalised Planner

1. Goal regression for generalised plan synthesis

2. Database algorithms for policy execution

3. …
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Experimental Results
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Benchmarks: HUGE numbers of objects

Max Training #Objects Max Testing #Objects

Barman 27 853

Ferry 8 1461

Gripper 5 48500

Logistics 29 1260

Miconic 11 1950

Rovers 36 596

Satellite 43 402

Transport 17 354



Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Satisficing and Optimal Generalised Planning via Goal Regression AAAI’26Chen, D.; Hofmann, T.; Klassen, T.; McIlraith, S.

● Compare against 3 configurations of the Sketch Learner [5] generalised planner

● 32 GB memory

● 12 hour runtime limit

● 5 repeats per domain

Synthesis Experiments

[5] Dominik Drexler, Jendrik Seipp, Hector Geffner: Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width. ICAPS 2022
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Average time and memory usage (↓)

Synthesis Results

MOOSE uses 
<1GB memory 

and synthesises 
GenPlans for all 

domains
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● 8 classical domains and 4 numeric domains

● Compare against:

○ Classical planners: Sketch Learner [5], LAMA [6]

○ Numeric planners: ENHSP(mrp+hj) [7], ENHSP(M(3h||3n) [8]

● 8 GB memory

● 30 minute runtime limit

● 5 repeats per problem

Satisficing Planning Experiments

[5] Dominik Drexler, Jendrik Seipp, Hector Geffner: Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width. ICAPS 2022
[6] Silvia Richter, Matthias Westphal: The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks. J. Artif. Intell. Res. 39: 127-177 (2010)
[7] Enrico Scala, Alessandro Saetti, Ivan Serina, Alfonso Emilio Gerevini: Search-Guidance Mechanisms for Numeric Planning Through Subgoaling Relaxation. ICAPS 2020
[8] Dillon Z. Chen, Sylvie Thiébaux: Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning. SOCS 2024
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Cumulative coverage (↑)

The number of problems (y-axis) that a planner solves within n seconds (x-axis)

Satisficing Planning Results

MOOSE solves 
almost all problems 

much faster than 
the baselines
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time (s) time (s)
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We’re not done yet!
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Instantiate a GPlan π on a problem P ∈ Ptest with search space pruning via PDDL axioms

1. encode axioms that detect unachieved goals 

pug(X) :- pg(X) ∧ ¬p(X)

2. encode axioms that restrict action application based on learned rules

(α1)π(X) :- ⋀i=1,...,mpi
s(Xi

s) ∧ ⋀j=1,...,n (pj
g)ug(Xi

g)

3. feed transformed PDDL problem into a planner that supports axioms

Methodology: (3) Instantiating GenPlans via Search

quality 
focused GP
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Returns optimal plans under certain conditions 
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⇒ MOOSE Generalised Planner

1. Goal regression for generalised plan synthesis

2. Database algorithms for policy execution

3. PDDL axioms for search space pruning
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● 8 classical domains

● use SymK [9] as downstream planner that supports PDDL axioms

● Compare against SymK without axioms and Scorpion [10] 

● 8 GB memory

● 30 minute runtime limit

● 5 repeats per problem

Optimal Planning Experiments

[9] David Speck, Jendrik Seipp, Álvaro Torralba: Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions. J. Artif. Intell. Res. 82 (2025)
[10] Jendrik Seipp, Thomas Keller, Malte Helmert: Saturated Cost Partitioning for Optimal Classical Planning. J. Artif. Intell. Res. 67: 129-167 (2020)
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Coverage table by domain (↑)Cumulative coverage (↑)

Optimal Planning Results

MOOSE solves 
more problems 

optimally in total

MOOSE usually 
improves upon its 

base planner 
(SymK)
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● Problem: non-decomposable goals

○ Solution: learn goal orderings

● Problem: path-finding

○ Solution: transitive closure features, or search

● Problem: a posteriori policy termination

○ Solution: Sieve algorithm

Limitations and Future Work
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Summary

Method

Problem

Theory

Experiments

Synthesise generalised plans for solving families 
of planning problems

Synthesise via goal regression
  → improve synthesis efficiency
Instantiate via database query algorithms
  → improve planning speed
Instantiate via encoding rules as pruning axioms
  → improve solution quality

See paper for soundness and completeness 
theorems

Improvements on the 3 metrics of synthesis 
cost, instantiation cost, and solution quality

regr(g, a) = (g \ add(a)) ∪ pre(a)

Goal regression elicits 
powerful generalisation over 

structured models


