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PDDL (STRIPS) Planning

Sequential decision making problems over formally defined models

A domain is a set of first-order predicates and action schemata 9 ={®, #)
A problem is a domain, initial state, goal cond. and finite set of objects P ={, s°, g, 0)

A plan a is sequence of actions that progresses s’ to a state satisfying g

PDDL models exhibit
rich structure to help
generate solutions
efficiently
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PDDL Planning: Household Robot Example

Domain Problem
(:action move [(:objects dog ball apple mango cake)] ()bjects
:parameters (?from ?to) q:init )
:precondition (and (atRobot ?from)) action Schema (hungry dog)

:effect (and (atRobot ?to)

(at mango bedroom)
(not (atRobot ?from))))

(at cake livingRoom) Lo
(at apple kitchen) initial state
(at ball backyard)
(atRobot backyard)

(:action pickUp
:parameters (?obj ?loc)

:precondition (and[(at ?0obj ?loc)] prec“cate )

\ 2
(atRobot ?loc) (handFree)) (:goal

:effect (and (holding ?obj) (not (at ?obj ?loc))

(at cake kitchen)
(not (handFree))))

goal condition
(at ball storageRoom)

(:action putDown
:parameters (?obj ?loc)
:precondition (and (holding ?obj) (atRobot ?loc))
:effect (and (at ?obj ?loc) (handFree)
(not (holding ?o0bj))))

AAAI'26
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Problem Statement: Generalised Planning (GP)

Generalised planning problem:

e adomain®

e training planning problems 2. . from 9

train

e testing planning problems 2, from D

Generalised plan: is a program m that

e s synthesised from P

train

e can be instantiated to solve problemsin 2

generalisation in sequential

decision-making problems across:

e unseen states
e unseen goals
e arbitrary number of objects

AAAI'26
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Generalised Planning is Hard and Interesting!

e Space of generalised plans is huge

e Some models of GP problems are EXPSPACE-complete [1,2]

e Generalisation is difficult and a core problem of Al

[1] Siddharth Srivastava, Shlomo Zilberstein, Neil Immerman, Hector Geffner: Qualitative Numeric Planning. AAAI 2011
[2] Blai Bonet, Hector Geffner: Qualitative Numeric Planning: Reductions and Complexity. J. Artif. Intell. Res. 69: 923-961 (2020)
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Satisficing and Optimal Generalised Planning via Goal Regression

Current Approaches

e Deep/machine learning approaches

(@)

(@)

imitation learning
e.g. GNNs, Transformers
v fast to synthesise policies

X low expressivity, not interpretable

Symbolic/abstraction approaches

(@)

(@)

(@)

(@)

theorem proving
e.g. QNP, ASP
X slow to synthesise policies

v expressive, interpretable

AAAI'26
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Our approach: Goal Regression

Goal regression [3, 4] computes the minimal and sufficient

condition for achieving a goal g via an action a
= v efficient policy synthesis
= v expressive and interpretable policies

e PDDL STRIPS goal regression is defined by

regr(g, a) = (g \ add(a)) U pre(a)

[3] Richard Fikes, Peter E. Hart, Nils J. Nilsson: Learning and Executing Generalized Robot Plans. Artif. Intell. 3(1-3): 251-288 (1972)
[4] Raymond Reiter: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression. Artificial and Mathematical Theory of Computation 1991
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Methodology: (1) Synthesising GenPlans via Goal Regression

Synthesise a GPlan m in the form of a set of first-order rules from 2_ . by

1. compute optimal plans {a,, ..., @} for single goal atoms in some order {g,,..., g}

for each training problem P € P

train

2. perform goal regression on goals g; with corresponding plans m; to get a set of

partial-state, macro-action pairs {g;, a,) where a,= a,, ..., a,

3. lift the set of pairs {g;, @) and goals g, into a set of first-order rules

state condition goal condition actions

{3000, AN, PEXE| A X9, ... a X}

,,,,,
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STRIPS Domain

[ putDown

del:

var: 2obj, ?loc
pre: atRobot (?loc), holding(?obj)
add: at(?obj, ?loc), handFree()
del: holding(?obj)
[ move
var: ?from, ?to
pre: atRobot (?from)
add: atRobot (to)

atRobot (?from)

Satisficing and Optimal Generalised Planning via Goal Regression

transportation
domain

AAAI'26
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STRIPS Domain

Satisficing and Optimal Generalised Planning via Goal Regression

putDown

var: 2obj, ?loc

pre: atRobot (?loc), holding(?obj)
add: at(?obj, ?loc), handFree()
del: holding(?obj)

[ move

var: ?from, ?to

pre: atRobot (?from)

add: atRobot (to)

del: atRobot (?from)

Goal Condition

at (cake, kitchen)

‘holding(cake)
atRobot (backyard)
at (dog, kitchen)

initial state
and
goal condition

AAAI'26
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STRIPS Domain

Satisficing and Optimal Generalised Planning via Goal Regression

putDown

var: 2obj, ?loc

pre: atRobot (?loc), holding(?obj)
add: at(?obj, ?loc), handFree()

\ del: holding(?obj)

move

var: ?from, ?to

pre: atRobot (?from)

add: atRobot (to)

del: atRobot (?from)

Progression

Goal State

'at(cake, kitchen)r

atRobot (kitchen)
handFree ()

Kat(dog,

--------------- » at (cake,

kitchen)

[ putDown (cake, kitchen)

at (dog,

at (dog,

holding (cake)
atRobot (kitchen)

kitchen)

I [move(backyard, kitchen)]

holding (cake)
atRobot (backyard)

kitchen)

Goal Condition

kitchen)

find a plan and
progress the
initial state

AAAI'26
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STRIPS Domain

Goal State Goal Condition

at (cake, kitchen)'
atRobot (kitchen)

7 handFree () regress the goal

--------------- » at (cake, kitchen)

"VputDown at (dog, kitchen) ] With the plan

var: 20bj, 2loc

pre: atRobot (?loc), holding(?obj) - [ putDown (cake, kitchen) ]l
add: at(?obj, ?loc), handFree()

del: holding(20bj) i

hold1ng(ce;ke) holding(cake)
ST ..MMl.'at ldog ki soheg) atRobot (kitchen)
var: ?from, ?to ~

pre: atRobot (?from) - I[move (backyard, kitchen) ]l
add: atRobot (to) N

e del: atRobot (?from) ) holding (cake) | T

= atRobot (backyard
at/(dog, KLtehen) atRobot (backyard)

Progression
uoIssaIfay

regression deems
at (dog, kitchen)
irrelevant
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STRIPS Domain

Satisficing and Optimal Generalised Planning via Goal Regression

AAAI'26

lift the
regressed states
into rules

Generalised Plan

( putDown

var: 2obj, ?loc

pre: atRobot (?loc), holding(?obj)
add: at(?obj, ?loc), handFree()

del: holding(?obj)

[ move
var: ?from, ?to
pre: atRobot (?from)
add: atRobot (to)

: atRobot (?from)

Progression

Goal State
(at (cake, kitchen)
atRobot (kitchen)
handFree ()
\ at (dog, kitchen)

\

Goal Condition

» at (cake, kitchen)

[ putDown (cake, kitchen) ]l

holding (cake)
atRobot (kitchen)
at (dog, kitchen)

holding(cake)
atRobot (kitchen)

I [move(backyard, kitchen) ]l

holding (cake)
atRobot (backyard)
at (dog, kitchen)

\ J

holding (cake)
atRobot (backyard)

UoISSaITAY

J L

rulel
var: 2obj, ?loc

sCond: atRobot (?loc), holding(?obj)
gCond: at(?obj, ?loc)

actions: putDown(?0obj, ?loc)

rule2

var:s 2o0bi;: 2415 212
sCond: atRobot (?11), holding(?obj)
gCond: at(?obj, ?212)
actions: move(?11, ?12), putDown(?obj, ?12)
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Methodology: (2) Instantiating GenPlans via Database Algorithms

speed
Instantiate a GPlan m on a problem P € P, by treating it as a policy focused GP

1. sets=s,and while the goal has not been achieved, repeat the following steps
2. ground a lifted rule where A_, p2(X*) holds in s and /\j=1 npjg(ng) holdsing\s

----------

3. apply corresponding sequence of actions a (X.°), ..., aq(Xq") ons

ground with

m first-order query
SQLite algorithms
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= MOOSE Generalised Planner

1. Goal regression for generalised plan synthesis

2. Database algorithms for policy execution
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Experimental Results
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Satisficing and Optimal Generalised Planning via Goal Regression

Benchmarks: HUGE numbers of objects

Max Training #Objects Max Testing #Objects
Barman 27 853
Ferry 8 1461
Gripper 5 48500
Logistics 29 1260
Miconic 11 1950
Rovers 36 596
Satellite 43 402
Transport 17 354

AAAI'26
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Synthesis Experiments

e Compare against 3 configurations of the Sketch Learner [5] generalised planner
e 32 GB memory
e 12 hour runtime limit

e 5repeats per domain

[5] Dominik Drexler, Jendrik Seipp, Hector Geffner: Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width. ICAPS 2022
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Synthesis Results

Average time and memory usage (|)

MOQOSE uses

Time (s) Memory (MB)
<1GB memory
: 2 7 Q) 2 = Q
and synthesises - z z - z z > o
. [~ > e . . . e
GenPlans for all = = “ S 5 5 5 e
: 3 3 - =) . - - S
domains 7 % % = % %) % =
Barman - - = - . -
Ferry 21 12 02 9 184 134 76
Gripper - 9 45 10 66 142 391
Logistics - - - - - - -
Miconic 57 01 3 12 381 56 125
Rovers - - = = - -
Satellite - - 1559 - - 7598

Transport - 212 21 - 114129




Chen, D.; Hofmann, T.; Klassen, T.; Mcllraith, S. Satisficing and Optimal Generalised Planning via Goal Regression AAAI'26

Satisficing Planning Experiments

8 classical domains and 4 numeric domains

e (Compare against:
o Classical planners: Sketch Learner [5], LAMA [6]

o Numeric planners: ENHSP(mrp+hj) [7], ENHSP(M(3h| | 3n) [8]

8 GB memory
e 30 minute runtime limit

e 5repeats per problem

[5] Dominik Drexler, Jendrik Seipp, Hector Geffner: Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width. ICAPS 2022

[6] Silvia Richter, Matthias Westphal: The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks. J. Artif. Intell. Res. 39: 127-177 (2010)

[7] Enrico Scala, Alessandro Saetti, lvan Serina, Alfonso Emilio Gerevini: Search-Guidance Mechanisms for Numeric Planning Through Subgoaling Relaxation. ICAPS 2020
[8] Dillon Z. Chen, Sylvie Thiébaux: Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning. SOCS 2024
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Satisficing Planning Results

Cumulative coverage (1)

The number of problems (y-axis) that a planner solves within n seconds (x-axis)

P SAT Numeric __SAT Classic
2300 ... — Moose 2 600 e — Moose
S 200 - =~ == " mrpthj s 400 LAMA
el | ' 4 sl ‘
£ 100 - = M(3h||3n) g 2007 SLearner
0 0
° 32 o ° 283G
== 2 MOOSE solves S 2
== almost all problems o<
time (s) much faster than time (s)

the baselines
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We're not done yet!
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Methodology: (3) Instantiating GenPlans via Search

Instantiate a GPlan m on a problem P € P, _ with search space pruning via PDDL axioms

1. encode axioms that detect unachieved goals
quality

P(X) = p (X) A =p(X) focused GP

2. encode axioms that restrict action application based on learned rules

,,,,,

3. feed transformed PDDL problem into a planner that supports axioms
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Returns optimal plans under certain conditions
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= MOOSE Generalised Planner

1. Goal regression for generalised plan synthesis
2. Database algorithms for policy execution

3. PDDL axioms for search space pruning
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Optimal Planning Experiments

e 8 classical domains

e use SymK[9] as downstream planner that supports PDDL axioms
e Compare against SymK without axioms and Scorpion [10]

e 8 GB memory

e 30 minute runtime limit

e 5repeats per problem

[9] David Speck, Jendrik Seipp, Alvaro Torralba: Symbolic Search for Cost-Optimal Planning with Expressive Model Extensions. J. Artif. Intell. Res. 82 (2025)
[10] Jendrik Seipp, Thomas Keller, Malte Helmert: Saturated Cost Partitioning for Optimal Classical Planning. J. Artif. Intell. Res. 67: 129-167 (2020)
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Optimal Planning Results

Cumulative coverage (1) Coverage table by domain (1)
Z
MOOSE solves S -
more problems £ 5 8
: optimally in total i S o
OPT Classic P y R % B =
g — Moose Barman 0 12 24 6
@ Ferry 7 18 = 30.0
0 dapfET T e TS SymK Gripper 7 27.0
& - = Scorpion Logistics | 22 10 15.0
Miconic 30 30 30.0
Rovers 18 20 20.0
S N = =
S S - MOOSE usually Satellite 261 21 21.4
o O Improves upon its Transport . 200 13 15.0

. base planner
time (s) (S)f)mK) > (240) 140 154 [183.0
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Limitations and Future Work

e Problem: non-decomposable goals

o Solution: learn goal orderings
e Problem: path-finding

o Solution: transitive closure features, or search
e Problem: a posteriori policy termination

o Solution: Sieve algorithm



Chen, D.; Hofmann, T.; Klassen, T.; Mcllraith, S. Satisficing and Optimal Generalised Planning via Goal Regression AAAI'26

Goal regression elicits
Summary powerful generalisation over
structured models

Problem Synthesise generalised plans for solving families regr(g, a) = (g \ add(a)) U pre(a)
of planning problems
state condition goal condition actions
Synthesise via goal regression {H{X}‘/\,-=, ..... PN Ny o PEORF) ) XD, e “q(Xq")G
— improve synthesis efficiency
Instantiate via database query algorithms
. . X) - \. SX? _ £) (X¢
MEthOd — improve planning speed @)X = Nicy,. P OGC) N N, (P X)
Instantiate via encoding rules as pruning axioms — e
— improve solution quality s 5 g s 5 9
Theory See paper for soundness and completeness L e
Grip.pe.r - 9 45 10 66 142 391
AT EOTEE e e
Swie . s B
Transport - zamezn 2 - 14129
Experiments Improvements on the 3 metrics of synthesis L oose 300] ™ " Noose 200
& cost, instantiation cost, and solution quality e el oo
0 0
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