
Satisficing and Optimal Generalised Planning via Goal Regression
Dillon Z. Chen1,2,3 Till Hofmann4 Toryn Q. Klassen1,3 Sheila A. McIlraith1,3

1Vector Institute, Toronto, Canada
2LAAS-CNRS, University of Toulouse, France

3University of Toronto, Canada
4RWTH Aachen University, Germany

Synthesising GenPlans via Goal Regression

Instantiating GenPlans via Database

Algorithms

Experiments

Planning and RL: What’s the Difference?

PDDL STRIPS Planning
● A domain is a set of first-order predicates and action schemata D = 〈P, A〉

● A problem is a domain, initial state, goal cond. and finite set of objects P = 〈D, s0, g, O〉

● A plan α is sequence of actions that progresses s0 to a state satisfying g

Planning Reinforcement Learning
model-known model-free or model-based

goal-conditioned, minimise cost maximise reward

transitions modelled symbolically transitions modelled as distributions

search algorithms: A*, GBFS, iLAO*, LRTDP search algorithms: MTCS, UCT, TD(λ)

heuristic functions (cost-to-go estimator) value functions (expected reward)

algorithms guided by models algorithms guided by rewards

Both Solve MDPs!

(1) Synthesiser

(2) Instantiator

Problem Statement — Generalised Planning

Generalised planning problem:

● a domain D
● training planning problems Ptrain from D
● testing planning problems Ptest from D

Generalised plan (GenPlan): is a program π that

● is synthesised from Ptrain

● can be instantiated to solve problems in Ptest

focus on extrapolation setting:
f(Ptest) > f(Ptrain)

where f(X) denotes the maximum
number of objects in X

● Goal regression computes the minimal and sufficient condition for achieving a goal g via an action a
○ ⇒ efficient policy space search

● PDDL STRIPS goal regression is defined by

regr(g, a) = (g \ add(a)) ∪ pre(a)

Synthesise a GPlan π in the form of a set of first-order rules from Ptrain by

1. compute optimal plans {ɑ1 , ..., ɑn} for single goal atoms in some order {g1 ,..., gn} for

each training problem P ∈ Ptrain

2. perform goal regression on goals gi with corresponding plans πi to get a set of

partial-state, macro-action pairs 〈σi , ɑi〉 where ɑi = α1, …, αq

3. lift the set of pairs 〈σi , ɑi〉 and goals gi into a set of first-order rules

{∃{X} ⋀i=1,...,mpi
s(Xi

s) ∧ ⋀j=1,...,n pj
g(Xj

g) → α1(X1
a), …, αq(Xq

a)}

state condition goal condition actions

Instantiating GenPlans via Search

Instantiate a GPlan π on a problem P ∈ Ptest by treating it as a policy

1. set s = s0 and while the goal has not been achieved, repeat the following steps

2. ground a lifted rule where ⋀i=1,...,mpi
s(Xi

s) holds in s and ⋀j=1,...,n pj
g(Xj

g) holds in g \ s

3. apply corresponding sequence of actions α1(X1
a), …, αq(Xq

a) on s

ground with
first-order query

algorithms

speed
focused GP

Instantiate a GPlan π on a problem P ∈ Ptest with search space pruning via PDDL axioms

1. encode axioms that detect unachieved goals

pug(X) :- pg(X) ∧ ¬p(X)

2. encode axioms that restrict action application based on learned rules

(α1)π(X) :- ⋀i=1,...,mpi
s(Xi

s) ∧ ⋀j=1,...,n (pj
g)ug(Xi

g)

3. feed transformed PDDL problem into a planner that supports axioms

quality
focused GP

Cumulative coverage (↑)

The number of problems (y-axis) that a planner solves within n seconds (x-axis)

MOOSE solves
almost all

problems faster
than the baselines

Coverage table by domain (↑)Cumulative coverage (↑)

MOOSE solves
more problems

optimally in total

MOOSE usually
improves upon its

base planner
(SymK)

#p
ro

bl
em

s

time (s)

Average time and memory usage (↓)

MOOSE uses
<1GB memory

and synthesises
GenPlans for all

domains

Benchmarks: HUGE numbers of objects

Max #Training Objects Max #Testing Objects

Barman 27 853

Ferry 8 1461

Gripper 5 48500

Logistics 29 1260

Miconic 11 1950

Rovers 36 596

Satellite 43 402

Transport 17 354

Synthesis Experiments

Satisficing Planning Experiments

Optimal Planning Experiments

