

PDDL STRIPS Planning

- A **domain** is a set of **first-order predicates** and **action schemata** $\mathcal{D} = \langle \mathcal{P}, \mathcal{A} \rangle$
- A **problem** is a **domain**, initial state, goal cond. and finite set of **objects** $\mathcal{P} = \langle \mathcal{D}, \mathbf{s}^0, \mathbf{g}, \mathbf{O} \rangle$
- A **plan** α is **sequence of actions** that progresses \mathbf{s}^0 to a state satisfying \mathbf{g}

Planning and RL: What's the Difference?
Both Solve MDPs!

Planning	Reinforcement Learning
model-known	model-free or model-based
goal-conditioned, minimise cost	maximise reward
transitions modelled symbolically	transitions modelled as distributions
search algorithms: A*, GBFS, iLAO*, LRTDP	search algorithms: MTCS, UCT, TD(λ)
heuristic functions (cost-to-go estimator)	value functions (expected reward)
algorithms guided by models	algorithms guided by rewards

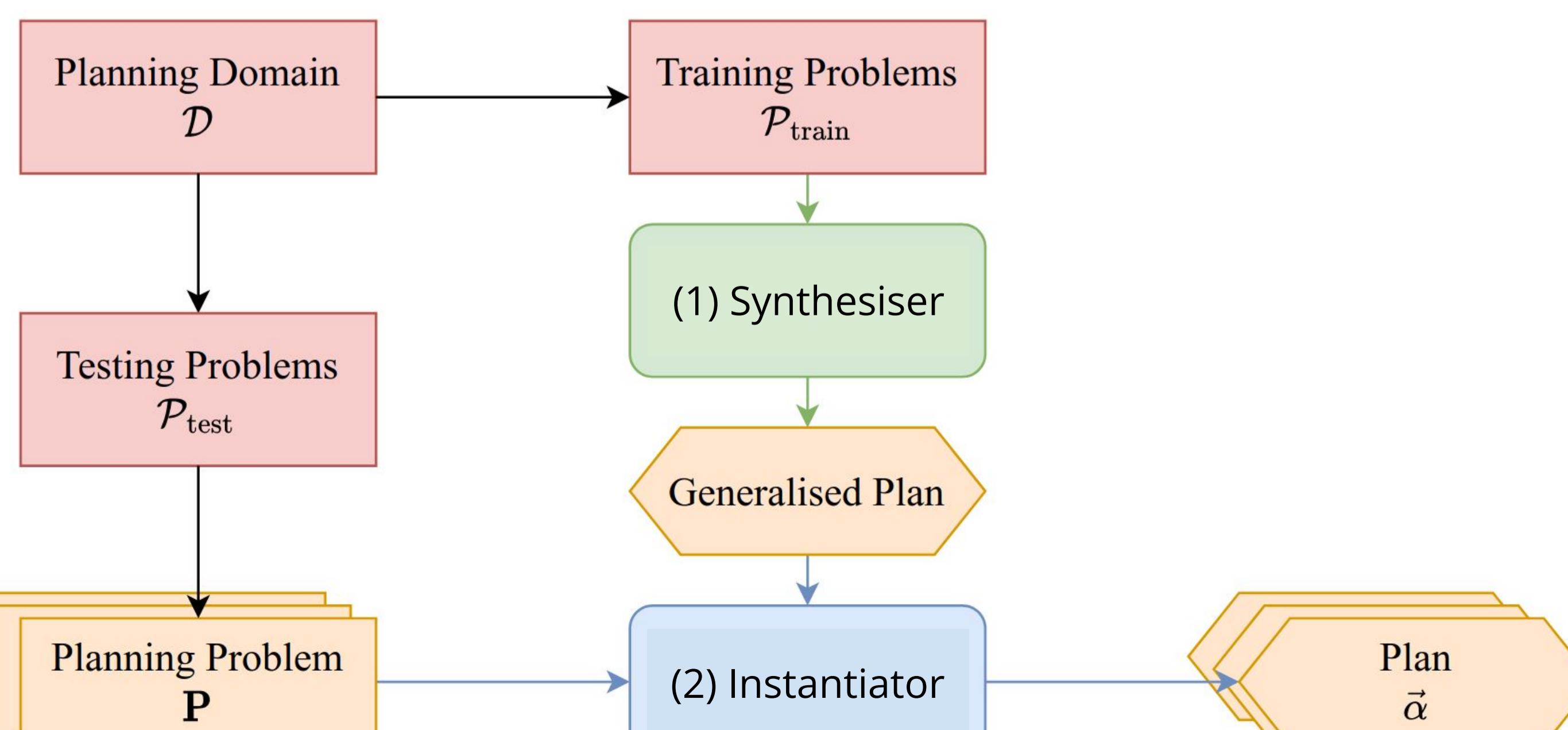
Problem Statement — Generalised Planning

Generalised planning problem:

- a domain \mathcal{D}
- training planning problems $\mathcal{P}_{\text{train}}$ from \mathcal{D}
- testing planning problems $\mathcal{P}_{\text{test}}$ from \mathcal{D}

- Generalised plan (GenPlan):** is a **program** π that
- is **synthesised** from $\mathcal{P}_{\text{train}}$
 - can be **instantiated** to solve problems in $\mathcal{P}_{\text{test}}$

focus on **extrapolation setting**:
 $f(\mathcal{P}_{\text{test}}) > f(\mathcal{P}_{\text{train}})$
 where $f(X)$ denotes the maximum number of objects in X



Synthesise a GPlan π in the form of a **set of first-order rules** from $\mathcal{P}_{\text{train}}$ by

- compute optimal plans $\{\alpha_1, \dots, \alpha_n\}$ for single goal atoms in some order $\{g_1, \dots, g_n\}$ for each training problem $\mathcal{P} \in \mathcal{P}_{\text{train}}$
- perform goal regression on goals g_i with corresponding plans α_i to get a set of partial-state, macro-action pairs $\langle \sigma_i, \alpha_i \rangle$ where $\alpha_i = \alpha_1, \dots, \alpha_n$
- lift the set of pairs $\langle \sigma_i, \alpha_i \rangle$ and goals g_i into a set of first-order rules

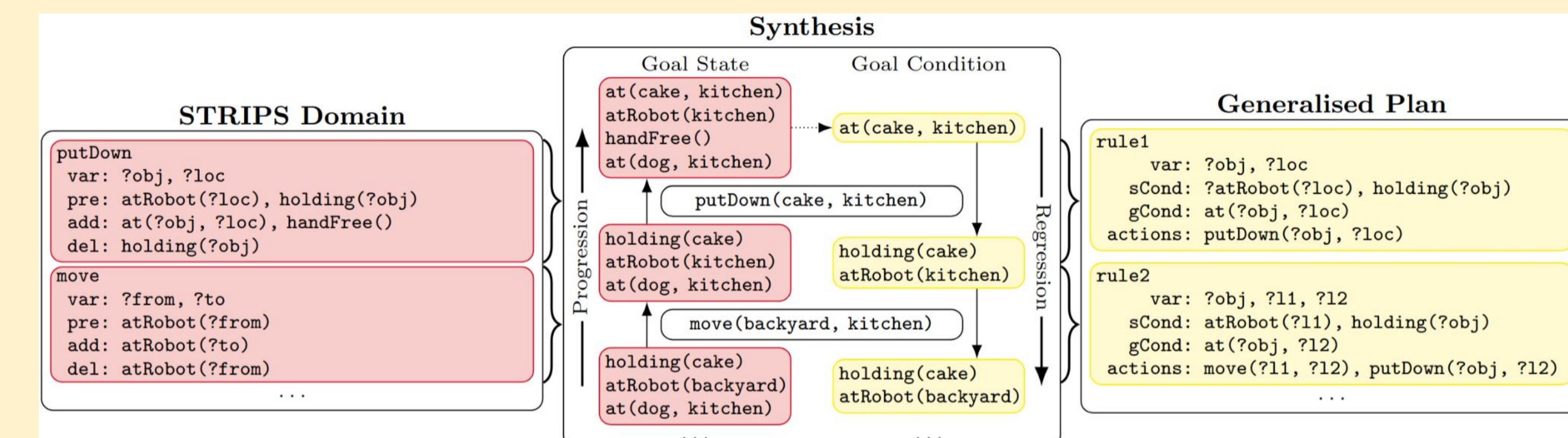
$$\{\exists \{X\} \wedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \wedge_{j=1, \dots, n} p_j^g(X_j^g) \rightarrow \alpha_1(X_1^a), \dots, \alpha_q(X_q^a)\}$$

state condition goal condition actions

Synthesising GenPlans via Goal Regression

- Goal regression** computes the **minimal and sufficient condition** for achieving a goal g via an action a
 - efficient policy space search
- PDDL STRIPS goal regression is defined by

$$\text{regr}(g, a) = (g \setminus \text{add}(a)) \cup \text{pre}(a)$$

Instantiating GenPlans via Database
Algorithms

Instantiate a GPlan π on a problem $\mathcal{P} \in \mathcal{P}_{\text{test}}$ by treating it as a policy

- set $\mathbf{s} = \mathbf{s}_0$ and **while** the goal has not been achieved, repeat the following steps
- ground** a lifted rule where $\wedge_{i=1, \dots, m} p_i^s(X_i^s)$ holds in \mathbf{s} and $\wedge_{j=1, \dots, n} p_j^g(X_j^g)$ holds in $g \setminus \mathbf{s}$
- apply** corresponding sequence of actions $\alpha_1(X_1^a), \dots, \alpha_q(X_q^a)$ on \mathbf{s}

ground with
first-order query
algorithms

speed
focused GP

Instantiating GenPlans via Search

Instantiate a GPlan π on a problem $\mathcal{P} \in \mathcal{P}_{\text{test}}$ with search space pruning via **PDDL axioms**

- encode axioms that **detect unachieved goals**
- encode axioms that **restrict action application** based on learned rules
- feed transformed PDDL problem into a planner that supports axioms

$$p_{ug}(X) \vdash p_g(X) \wedge \neg p(X)$$

$$(\alpha_1)_{\pi}(X) \vdash \wedge_{i=1, \dots, m} p_i^s(X_i^s) \wedge \wedge_{j=1, \dots, n} (p_j^g)_{ug}(X_j^g)$$

quality
focused GP

Experiments

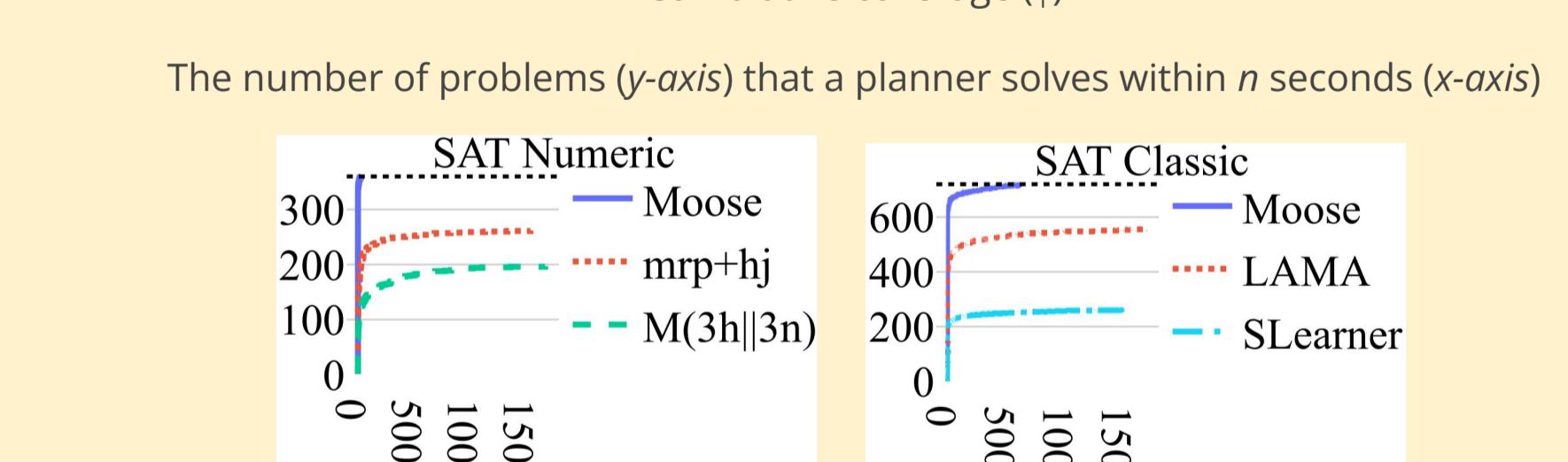
Benchmarks: **HUGE** numbers of objects

	Max #Training Objects	Max #Testing Objects
Barman	27	853
Ferry	8	1461
Gripper	5	48500
Logistics	29	1260
Miconic	11	1950
Rovers	36	596
Satellite	43	402
Transport	17	354

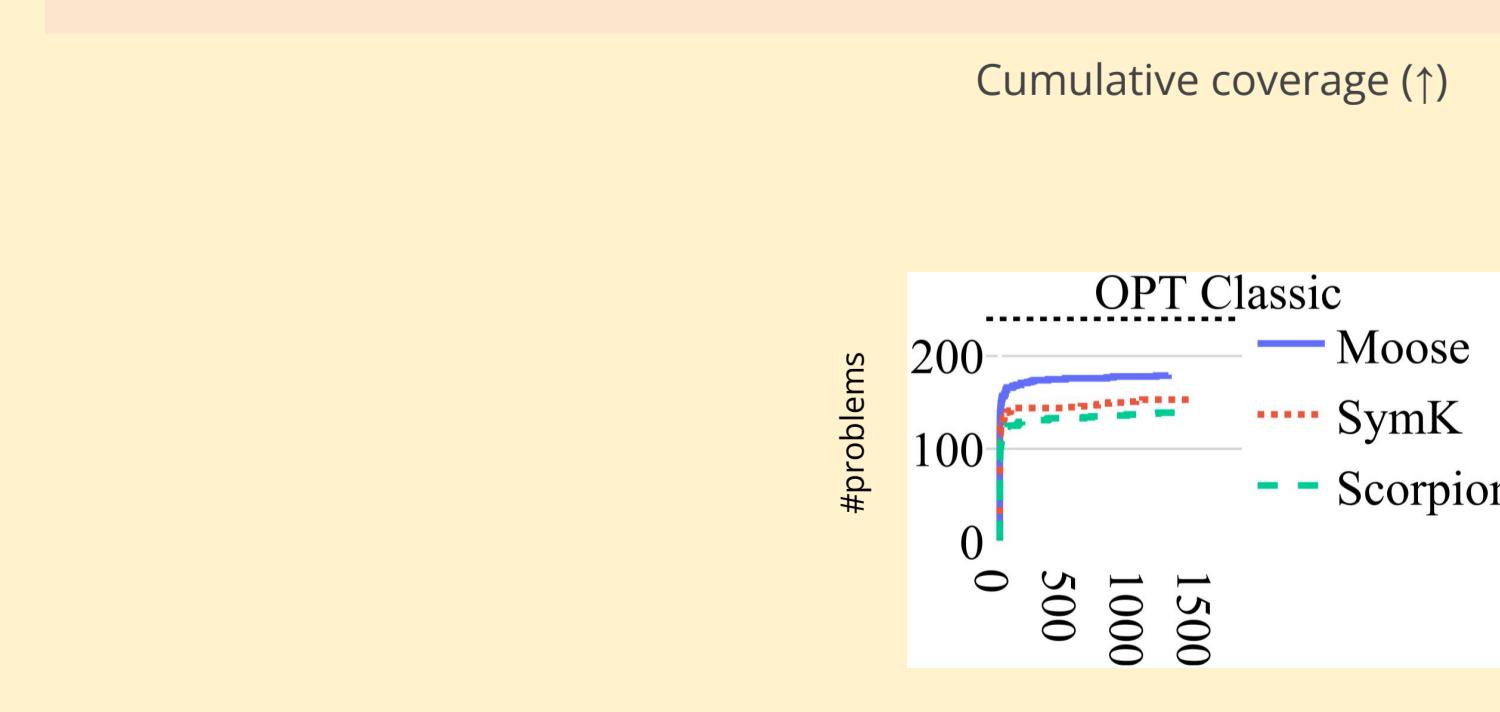
Synthesis Experiments

	Average time and memory usage (↓)					
	Time (s)		Memory (MB)		Time (s)	
	SLEARNS-1	SLEARNS-2	MOOSE	SLEARNS-1	SLEARNS-2	MOOSE
Barman	-	-	202	-	-	184
Ferry	21	12	2	9	10	52
Gripper	3	9	45	10	66	142
Logistics	-	-	71	-	-	73
Miconic	57	1	3	12	381	56
Rovers	-	-	534	-	-	187
Satellite	-	-	514	-	-	7598
Transport	-	12	12	21	-	82

MOOSE uses <1GB memory and synthesises GenPlans for all domains



MOOSE solves almost all problems faster than the baselines



MOOSE solves more problems optimally in total

MOOSE usually improves upon its base planner (SymK)

Domain	Coverage table by domain (↑)		
	Scorpion	SymK	MOOSE
Barman	0	12	24.6
Ferry	17	18	30.0
Gripper	7	30	27.0
Logistics	22	10	15.0
Miconic	30	30	30.0
Rovers	18	20	20.0
Satellite	26	21	21.4
Transport	20	13	15.0
Σ	240	140	183.0