
Weisfeiler-Leman Features for Planning:
A 1,000,000 Sample Size Hyperparameter Study

Dillon Z. Chen

LAAS-CNRS, University of Toulouse, France

Abstract. Weisfeiler-Leman Features (WLFs) are a recently intro-
duced classical machine learning tool for learning to plan and search.
They have been shown to be both theoretically and empirically su-
perior to existing deep learning approaches for learning value func-
tions for search in symbolic planning. In this paper, we introduce new
WLF hyperparameters and study their various tradeoffs and effects.
We utilise the efficiency of WLFs and run planning experiments on
single core CPUs with a sample size of 1,000,000 to understand the
effect of hyperparameters on training and planning. Our experimen-
tal analysis show that there is a robust and best set of hyperparame-
ters for WLFs across the tested planning domains. We find that the
best WLF hyperparameters for learning heuristic functions minimise
execution time rather than maximise model expressivity. We further
statistically analyse and observe no significant correlation between
training and planning metrics.

1 Introduction

Learning to plan has gained significant interest in recent years due
to the advancements of machine learning approaches across various
fields, and the desire to construct autonomous systems that can gen-
eralise in long horizon decision making problems. An aim of learn-
ing to plan involves designing automated, domain-independent algo-
rithms for learning domain knowledge in an inductive manner from
small training problems that generalise and scales up planning to
problems of very large sizes [36, 41, 24, 70, 60, 61, 15, 52, 34, 10,
28, 66]. Indeed, real-world planning problems do not exhibit much
training data for autonomous systems to learn from, meaning that
the development of algorithms that can generalise from small train-
ing problems is indispensable.

A recently introduced approach involves learning heuristic func-
tions using Weisfeiler-Leman Features (WLFs) automatically ex-
tracted from graph representations of planning tasks [11]. The ap-
proach involves (1) transforming planning tasks into graphs, and (2)
embedding such graphs into feature vectors via the Weisfeiler-Leman
(WL) algorithm. It yields cheap to learn heuristic functions that per-
form favourably compared to both traditional domain-independent
heuristics and learned neural heuristics for planning. Its performance
can be attributed to its faster evaluation speed and greater expressive
power of the WL algorithm compared to existing learning for plan-
ning work that use neural networks.

In this work, we introduce various extensions and hyperparam-
eters of WLFs with various tradeoffs between model expressivity,
generalisation, and execution speed. Furthermore, we perform large
scale experiments resulting in over 1,000,000 planning runs in order

to rigorously understand the empirical effects of various hyperpa-
rameter settings on (1) training, (2) planning, and (3) the correlation
between training and planning metrics. Our findings are positive and
provide us a robust, best set of go-to hyperparameters for generating
WLFs for planning. We observe that the best WLF hyperparameters
for learning heuristic functions aim to minimise model size and ex-
ecution time rather than maximise model expressivity. Furthermore,
we identify that there is no statistically significant, strong correlation
between various training metrics and planning performance of WLF
models for heuristic search.

2 Related Work

The field of learning to plan has been tackled by various different ap-
proaches. In this section we cover more recent approaches for learn-
ing to plan and how our approach differs. We refer to the survey
by Celorrio et al. [7] for earlier works in the field.

Deep and Reinforcement Learning It is no surprise that there
is a large body of recent work employing deep or reinforcement
learning approaches for learning to plan given their progress in var-
ious fields. Toyer et al. [60, 61] and Dong et al. [15] introduced
the first works employing deep learning for symbolic planning via
Graph Neural Networks (GNNs) for learning policies that can gen-
eralise to instances of arbitrary size. Later works employed deep
learning architectures to learn heuristics to guide search in a domain-
dependent [27, 34] and domain-independent [52, 10] heuristics. Ex-
pressivity limits of GNNs [44, 68, 2] were exploited to show that
deep learning approaches cannot learn optimal domain knowledge
for planning [57, 10]. Reinforcement learning has also been used for
learning heuristics [42, 22] and policies [58], and transformers for
learning policies [47].

Large Language Models Large Language Models have been
used to perform one-shot planning via prompting with low suc-
cess [63, 64]. They have also been used to perform heuristic evalu-
ation during search but this has been shown again to be inefficient
and incomplete [35]. However, they have shown preliminary suc-
cess in certain domains for generating solvers [54] or heuristic func-
tions [62, 13] for search as code.

Generalised Planning Generalised Planning (GP) refers to a class
of approaches which learn interpretable and symbolic general poli-
cies that can loop [39, 55, 56, 32]. Works in GP learn such poli-
cies by generating nondeterministic abstractions of infinite sets of
planning instances [55, 33, 5, 4, 14] for which a solution is a
solution to the ground set of instances. Abstractions and policies

ECAI 2025
I. Lynce et al. (Eds.)
© 2025 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA251370

4653

can be synthesised and learned from features [5, 18] or found via
search [48, 49, 69, 38, 50].

Our work differs from deep learning and large language model ap-
proaches as we instead employ classical and statistical learning ap-
proaches which are more efficient in terms of learning and evaluation
than deep approaches and have the additional benefit of being inter-
pretable. We also differ from policy approaches in GP that are often
complete only under certain assumptions on the planning domain,
whereas by employing search our approach maintains completeness
over planning problems with finite state spaces. Lastly, our experi-
ments are extensive in terms of scale to determine the major factors
contributing to the performance of our approach.

3 Background

This section provides the formal definitions of planning tasks and
graphs required for understanding the Weisfeiler-Leman Features
(WLF) [11] used for learning, planning and search. For the sake of
brevity, we focus our attention on classical, lifted planning tasks.
However, we note that WLFs can also handle numeric planning
tasks [9]. Furthermore, they are state-centric meaning that they are
agnostic to action effects and hence can be extended to handle prob-
abilistic tasks [72]. Let [[n]] denote the set of integers {1, . . . , n}.

Planning Task A classical planning task is a deterministic state
transition model [21] given by a tuple P = 〈S,A, s0, G〉 where S
is a set of states, A a set of actions, s0 ∈ S an initial state, and
G ⊆ S a set of goal states. Each action a ∈ A is a function a :
S → S ∪ {⊥} where a(s) = ⊥ if a is not applicable in s, and
a(s) ∈ S is the successor state when a is applied to s. A solution
for a planning task is a plan: a sequence of actions π = a1, . . . , an

where si = ai(si−1) 	= ⊥ for i ∈ [[n]] and sn ∈ G. A state s in a
planning task P induces a new planning task P′ = 〈S,A, s,G〉. A
planning task is solvable if there exists at least one plan.

Lifted Representation Planning tasks are often compactly for-
malised in a lifted representation using predicate logic, such as via
PDDL [23, 30]. More specifically, a lifted planning task is a tuple
P = 〈O,P,A, s0,G〉, where O denotes a set of objects, P a set of
predicate symbols, A a set of action schemata, s0 the initial state,
and G the goal condition. We define a domain to be a set of lifted
planning tasks which share the same set of predicates P and action
schemata A. Understanding of the transition system induced by A
is not required for the sake of this paper, so we instead focus on the
representation of states and the goal condition next.

Each symbol P ∈ P is associated with an arity ar(P) ∈ N∪{0}.
Predicates take the form P (x1, . . . , xar(P)), where the xis denote
their arguments. Propositions are defined by substituting objects into
predicate arguments. More specifically, given P ∈ P , and a tuple of
objects o =

〈
o1, . . . ,oar(P)

〉
, we denote P (o) as the proposition

defined by substituting o into arguments of P . A state s is a set of
propositions. The goal condition G also consists of a set of proposi-
tions, and a state s is a goal state if s ⊇ G.

Graphs We denote a graph with categorical node features and edge
labels by a tuple G = 〈V,E,F,L〉. We have that V is a set of
nodes, E ⊆ V × V a set of edges, F : V → ΣV the categorical
node features, and L : E → ΣE the edge labels, where ΣV and ΣE

are finite sets of symbols. The neighbourhood of a node u ∈ V in a
graph is defined by N(u) = {v ∈ V | 〈u, v〉 ∈ E}. The neighbour-
hood of a node u ∈ V with respect to an edge label ι is defined by
Nι(u) = {v ∈ V | e = 〈u, v〉 ∈ E ∧ L(e) = ι}.

P

A B
C

initial state

A
B

C

goal condition

A

B

C

onTable(B)

on(C,B)

on(B,A)

onTable(C)

onTable(A)

A

B

C

onTable(B)

on(C,B)

on(B,A)

onTable(C)

onTable(A)

G x

Graph
Representation
(Section 4.1)

Feature
Generation

(Section 4.2)

Figure 1. The WL Feature pipeline for a Blocksworld instance (clear
propositions omitted).

4 WL Features for Planning

In this section, we describe the procedure for generating vector fea-
tures for planning tasks without the need for training labels. Fig-
ure 1 summarises the pipeline which involves converting planning
states into graphs, and applying a Weisfeiler-Leman (WL) algorithm
to generate the WLFs.

4.1 Graph Representation

The first component of the WLF pipeline involves the transformation
of planning tasks into graphs. Graphs with edge features are viewed
as ‘binary relational structures’ in other communities, from which
we can derive relational features with various sorts of algorithms. In
this section, we describe the Instance Learning Graph (ILG) [11] for
representing classical planning tasks.

The middle image in Figure 1 illustrates a subgraph of the ILG
encoding of a simple Blocksworld problem in the left image. Nodes
of the ILG represent the objects coloured in blue, goal conditions,
and state information of the planning task, with colours encoding the
semantics of nodes. More specifically, green nodes represent propo-
sitions in the state but not part of the goal condition, yellow nodes
represent goal conditions that have not yet been achieved in the cur-
rent state, and red nodes represent goal conditions that have been
achieved. Edges connect objects to propositions that are predicates
instantiated with the object, and edge labels encode the location of
predicates in which objects are instantiated. In the image, blue/or-
ange edges connect variable nodes to the object that is instantiated in
the first/second argument. The formal definition is as follows.

Definition 4.1. The Instance Learning Graph (ILG) of a lifted plan-
ning task P = 〈O,P,A, s0,G〉 is a graph with categorical node
features and edges labels G = 〈V,E,F,L〉 where

• nodes V = O ∪ s0 ∪ G,
• edges E =

⋃
p=P (o)∈s0∪G {〈p,oi〉 | i ∈ [[ar(P)]]},

• categorical node features F : V → ΣV defined by

F(u)=

⎧
⎪⎨

⎪⎩

object if u ∈ O
(pred(u), ag) if u ∈ s0 ∩ G
(pred(u), ug) if u ∈ G \ s0
(pred(u), ap) if u ∈ s0 \ G

where pred(u) denotes the predicate symbol of a proposition u.
We note that object and ag,ug,ap are constant symbols that
are agnostic to the planning domain1.

• edge labels L : E → N defined by 〈p,oi〉 �→ i.

In general, the maximum number of categorical node features in
the ILG of any problem for a domain with predicates P is |ΣV| =
1 + 3 |P| and the number of edge labels is equal to the maximum
predicate arity.

1 Standing for achieved goal, unachieved goal, and achieved propositional
nongoal, respectively.

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study4654

Algorithm 1: WL algorithm
Input: A graph G = 〈V,E,F,L〉, injective HASH function,

and number of iterations L.
Output: Multiset of colours.

1 c0(v) ← F(v), ∀v ∈ V
2 for l = 1, . . . , L do for v ∈ V do

3 cl(v) ←
HASH

(
cl−1(v),

⋃
ι∈ΣE

{{(cl−1(u), ι) | u ∈ Nι(v)}}
)

4 return
⋃

l=0,...,L{{cl(v) | v ∈ V}}

4.2 Feature Generation

The second component of the WLF pipeline involves transforming
graph representations of planning tasks into feature vectors for use
with any downstream task. The go-to example is learning heuristic
functions for heuristic search as we study in this paper.

The algorithms for feature generation of graphs are generally some
extension of the colour refinement algorithm, a special case of the
general k-Weisfeiler-Leman algorithm [67, 6]. In this section, we de-
scribe the colour refinement, or 1-Weisfeiler-Leman (WL) algorithm,
followed by how the algorithm is used for constructing feature vec-
tors from graphs.

The WL Algorithm The underlying concept of the WL algorithm
is to iteratively update node colours based on the colours of their
neighbours. The original WL algorithm was designed for graphs
without edge labels. We present the WL algorithm which can support
edge labels [3] in Algorithm 1. The algorithm’s input is a graph with
node features and edge labels as described in Section 3, alongside a
hyperparameter L determining how many WL iterations to perform.
The output of the algorithm is a canonical form for the graph that is
invariant to node orderings.

Line 1 initialises node graph colours as their categorical node fea-
tures. Lines 2 and 3 iteratively update the colour of each node v in
the graph by collecting all its neighbours and the corresponding edge
label (u, ι) into a multiset. This multiset is then hashed alongside v’s
current colour with an injective function to produce a new refined
colour. In practice, the injective hash function is built lazily, where
every time a new multiset is encountered, it is mapped to a new, un-
seen hash value. After L iterations, the multiset of all node colours
seen throughout the algorithm is returned.

Embedding graphs The WL algorithm has been used to generate
features for the WL graph kernel [53]. Each node colour constitutes a
feature, and its value for a graph is the count of the number of nodes
that exhibit or has exhibited the colour. Then given a set of colours
C known a priori, the WL algorithm can return a fixed sized feature
vector of size |C| for every input graph. In a learning for planning
pipeline, we collect the colours C from a set of training planning
tasks, followed by using the colours to embed arbitrary graphs (i.e.
converted from either training or testing tasks) into fixed sized feature
vectors from such colours. The steps are formalised as follows.

1. We construct C from a given set of graph representations of
planning tasks G1, . . . ,Gm by running the WL algorithm, with
the same HASH function and number of iterations L, on all of
them and then taking the set union of all multiset outputs, i.e.
C =

⋃
i∈[[m]] WL(Gi).

2. Now suppose we have collected a set of colours and enumerated
them by C = {c1, . . . , c|C|}. Then given a graph G and its multi-
set output from the WL algorithm M, we can define an embedding

of the graph into Euclidean space by the feature vector

[COUNT(M, c1), . . . , COUNT(M, c|C|)] ∈ R
|C|, (1)

where COUNT(M, ci) is an integer which counts the occurrence
of the colour ci in M. We note importantly that any colours re-
turned in M that are not in C are defined as unseen colours and
are entirely ignored in the output.

We can view colours as features, i.e. functions that map planning
tasks to real values, by ci(P) = COUNT(M, ci) where M is the
multiset output of WL on P encoded to a graph such as via the ILG.

5 WL Feature Hyperparameters

In this section, we introduce the various hyperparameters available
in a learning for planning pipeline employing WLFs. We describe
hyperparameters specific to WLFs as internal (Section 5.1) and those
that are general to a learning for planning pipeline as external (Sec-
tion 5.2). The hyperparameters we cover are summarised in Table 1.

5.1 Internal Hyperparameters

WL Algorithm

The WL algorithm from Section 4.2 is the canonical graph kernel
baseline for graph learning tasks due to the theoretical result that it
upper bounds distinguishing power of the message passing GNN ar-
chitecture [44, 68]. It is also an efficient algorithm that runs in low
polynomial time in the input graph and considered the first choice
to apply to graphs as described in the extensive graph kernel survey
by Kriege et al. [37]. Nevertheless, the graph learning community has
proposed various extensions of the WL algorithm and correspond-
ing GNN architectures that have provably more distinguishing power
than the WL algorithm, and yet are still computationally feasible.

Most notably, it is well known that the (k + 1)-WL algorithm is
strictly more powerful than the k-WL algorithm for k ≥ 2 but its
runtime scales exponentially in k. Thus, many extensions of the WL
algorithm and corresponding GNNs have been proposed to either ap-
proximate or achieve orthogonal expressiveness of higher order WL
algorithms [45, 46, 73, 65, 1]. Furthermore, graph kernels have been
proposed that also handle graphs with continuous node attributes [9].
We have implemented some of these WL extensions alongside com-
pletely new graph kernels in the current version of WLPlan which
we outline as follows. Figure 2 illustrates the expressivity hierarchy
of mentioned WL algorithms.

WL

(, {{, , }})

2-WL

({{,}},{{{{,,}},{{,,}},{{,,}}}})

2-LWL

({{, }},{{{{,,}},{{,,}}}})

iWL

⊗⊗ ⊗

⊗

⊗

Figure 2. Visualisations of neighbours (dotted) of the center node or node
pair (solid) in the WL, 2-WL, 2-LWL and iWL algorithms. In iWL, the WL

algorithm is run |V| times, where each time a different node is
individualised with a special colour.

2-WL The k-WL algorithms are a suite of incomplete graph iso-
morphism algorithms which have a one-to-one correspondence to k-
variable counting logics [6]. However, the k-WL algorithms scale ex-
ponentially in k, with the 2-WL algorithm exhausting memory limits

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study 4655

Setting Description E G S

Internal

WL Algorithm

WL The vanilla colour refinement algorithm. – – –
iWL WL extended with individualisation but incurs an additional runtime cost as WL

is repeated for each node in the graph.
↑ ↓ ↓

niWL Equivalent to iWL except that node features are normalised by the number of
node features.

↑ ↓ ↓

2-LWL A feasible approximation of 2-WL but still incurs the worst case runtime cost
which is quadratic in the number of nodes.

↑ ↓ ↓

2-WL WL extended to pairs of nodes. Computationally infeasible both runtime and
memory-wise for the tested datasets.

↑↑ ↓↓ ↓↓

Iterations

4 An arbitrarily chosen number in the original WLF paper that works well for opti-
mal heuristic estimators.

– – –

Low (< 4) Trades expressivity for improved speed and model size. ↓ ↑ ↑
High (> 4) Trades speed and generalisation for improved expressivity. ↑ ↓ ↓
Feature Pruning

none No pruning of collected features. – – –
i-mf Combination of MaxSAT and frequency counting for pruning. ↓ ↑ ↑
Hash Function

multiset The hash input in the original WL algorithm which corresponds to collecting
subtrees of a graph.

– – –

set Collapses duplicate neighbour colours with the aim of reducing the number of
unseen colours outside of training.

↓ ↑ ↑

External

State Representation

part Prunes propositions deemed static or unreachable by Fast Downward before gen-
erating WLFs for faster generation.

↓ – ↑

cmpl Uses all propositions from each state for generating WLFs. Does not lose infor-
mation but is slower to generate.

↑ – ↓

Optimiser

Lasso Linear Regression with L1 prior for predicting optimal heuristics.
GPR Gaussian Process Regression for predicting optimal heuristics.
SVR Support Vector Regression for predicting optimal heuristics.
rkLP Linear Programs for predicting ranking heuristics.
rkGPC Gaussian Process Classification for predicting ranking heuristics.
rkSVM Support Vector Machines for predicting ranking heuristics.

Table 1. A summary of various WLF hyperparameters and descriptions. Default values of internal features are marked as so.

on medium sized graph datasets. We describe and implement the 2-
WL algorithm and refer to [6, Section 5, page 13] and [25, Section 5,
page 4] for the general k-WL algorithm.

The idea of the 2-WL algorithm, outlined in Algorithm 2, is to now
assign and refine colours to ordered pairs of nodes. The algorithm
begins in Lines 1-3 by assigning all possible ordered pairs of nodes
a tuple of the node colours as well as the edge label between them.
If there is no edge between a pair of nodes, a special ⊥ value is used
as the edge label. Lines 4-5 then iteratively refine the colour of each
node pair by defining the neighbours of a pair (v, u) to be a multiset
of sequence of pairs2 ((w, u), (v, w)) where w ranges over all nodes
in the graph. Then the algorithm applies the colouring function of
the current iteration to all node pairs to create a multiset of tuples
of colours which are then hashed alongside the current node pair’s
colour. Finally, the algorithm returns the multiset of all node pair
colours seen throughout the algorithm in Line 6. To generalise to the
k-WL algorithm, one replaces node pairs with node k-tuples.

2-LWL The k-LWL algorithms [43] provide efficient approxima-
tions of the k-WL algorithms but still have the same worst case com-
putational complexity. The main approximations made are that node
2 In contrast, the Oblivious k-WL (cf. [25, Section 5, page 5]) defines the

neighbours as a sequence of multiset of pairs for k = 2.

Algorithm 2: 2-WL algorithm
Input: A graph G = 〈V,E,F,L〉, injective HASH function,

and number of iterations L.
Output: Multiset of colours.

1 e(v, u) ← L(v, u), ∀(v, u) ∈ E

2 e(v, u) ← ⊥, ∀(v, u) ∈ (V2) \E
3 c0(v, u) ← (F(v),F(u), e(v, u)), ∀(v, u) ∈ V2

4 for j = 1, . . . , L do for (v, u) ∈ V2 do

5 cj(v, u) ← HASH
(
cj−1(v, u), {{(cj−1(w, u), cj−1(v, w)) |

w ∈ V}})
6 return

⋃
j=0,...,L{{cj(v, u) | (v, u) ∈ V2}}

tuples are converted to node sets, reducing the number of possible
node tuples to consider per iteration by a constant factor (nk → (

n
k

)
),

and relaxing the definition of neighbours of node tuples. Now the
neighbour for a 2-sets of nodes {v, u} in 2-LWL is defined by the
set of set of 2-sets {{w, u} , {v, w}} where w now ranges over the
union of neighbours of u and v, instead of over all nodes. Algo-
rithm 3 outlines the 2-LWL algorithm and Figure 2 illustrates the
different neighbour definitions of 2-WL and 2-LWL.

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study4656

Algorithm 3: 2-LWL algorithm
Input: An undirected graph G = 〈V,E,F,L〉, injective

HASH function, and number of iterations L. Let {u, v}
denote a node pair without order or undirected edge.

Output: Multiset of colours.
1 e{v,u}←L{v,u}, ∀{v,u}∈E; e{v,u}←⊥, ∀{v,u}∈(

V
2

)\E
2 c0{v, u}←(F(v),F(u), e{v, u}), ∀{v, u}∈(

V
2

)
3 for j = 1, . . . , L do for {v, u} ∈ (

V
2

)
do

4 cj{v,u}←HASH
(
cj−1{v,u},{{{{cj−1{w, u}, cj−1{v, w}}}|

w ∈ N(v) ∪N(u)}})
5 return j=0,...,L{{cj{v,u} | {v,u} ∈ (

V
2

)}}

Algorithm 4: iWL algorithm
Input: A graph G = 〈V,E,F,L〉, injective HASH function,

and number of iterations L.
Output: Multiset of colours.

1 for w ∈ V do

2 c0w(v) ← F(v), ∀v ∈ V \ {w} ; c0w(w) ← (F(w),⊗)
3 for j = 1, . . . , L do for v ∈ V do

4 cjw(v) ←
HASH

(
cj−1
w (v),

⋃
ι∈ΣE

{{(cj−1
w (u), ι) | u ∈ Nι(v)}}

)

5 return
⋃

w∈V
⋃

j=0,...,L{{cjw(v) | v ∈ V}}

iWL We introduce an expressive WL algorithm extension inspired
by Identity-aware GNNs (ID-GNNs) [71], orthogonal to the k-WL
algorithms. ID-GNNs run a GNN |V| times on a graph which uses
different parameters for embedding updates on a selected, individu-
alised node on each GNN run. We kernelise the ID-GNN algorithm
into what we call the individualised WL algorithm, presented in Al-
gorithm 4 and Figure 2.

We have a single outer loop iterating over all nodes w ∈ V in a
graph in Line 1, and within each inner loop, all nodes are assigned
their initial node colour, except for w which is augmented a special,
individualised colour ⊗ that is not in ΣV of F. The remainder of the
algorithm is equivalent to the WL algorithm, except that iWL now
returns |V| more colours in the output multiset due to the outer loop.

Given that the number of colours returned by iWL is quadratic
in the number of refinable items, we proposed normalising the em-
beddings of the multisets by dividing COUNT(M, c) by |V|. In the
experiments below, we notate this feature generator as niWL.

Iterations

The number of iterations in a WLF configuration refers to the L pa-
rameter in Algorithm 1 and similar WL algorithms. One can view the
number of iterations as analogous to the number of message passing
layers in a graph neural network, which determines the receptive field
of the network around each graph node.

Feature Pruning

Feature pruning is a technique for reducing the number of redun-
dant or irrelevant features in a machine learning model in the con-
text of planning. Different feature pruning approaches trade off
soundness, referring the maximal preservation of feature informa-
tion, and computation arising from faster evaluation and lower mem-
ory footprint while training models. In our evaluation, we experiment
with no pruning and the iterative MaxSAT plus frequency pruning

(i-mf) [29]. More specifically, i-mf prunes features whose evalu-
ations on the training set are equivalent to existing features as seen in
previous works (e.g. [40, 5, 19, 16]) but uses a MaxSAT encoding to
add the constraint that features are pruned only if no other features
that depend on it are pruned. After pruning via MaxSAT, features that
appear less than 1% of the time are also pruned.

Hash Function

The hash function hyperparameter determines if we remain using the
multiset hash input in Line 3 of the WL algorithm in Algorithm 1
and similar variants, or replace the multiset hash with a set hash.
In both cases however, the output still uses a multiset in order to
return numeric feature vectors. The reasoning for using a set hash is
generate a smaller number of features at the expense of expressivity
to improve runtime and generalisation, and to reduce the number of
unseen colours during inference. For example, consider a training
set consisting of star graphs of degree at most 5. If at inference a
new star graph of degree 6 is introduced, the center node becomes
an unseen colour after one WL iteration, which prematurely limits
its receptive field. Indeed, Drexler et al. [17] show that for a sample
of states on most planning domains that reducing the hash function
from multisets to sets does not compromise model expressivity.

5.2 External Hyperparameters

State Representation

The external state representation hyperparameter refers to the propo-
sition which are used for feature generation. The canonical approach
is to use all propositions in the state for WLF generation which we
denote as the complete representation. Alternatively, as performed
in the original WLF paper [11], one can generate features for a sub-
set of facts such as those detected as relevant and nonstatic by Fast
Downward’s grounder [31]. We name this configuration partial.
The reasoning for this is that certain static propositions may be re-
dundant for feature generation, such as the ‘up’ and ‘down’ propo-
sitions in the Miconic domain, which are only relevant for action
applicability. Removing such propositions in certain domains signif-
icantly speeds up the feature generation runtime and hence increases
the number of node expansions to be performed during search. Con-
versely, there are cases where relevant static facts could be pruned
and thus, this option provides a tradeoff between speed and expres-
sivity, depending on the planning domain.

Optimiser

The external optimiser hyperparameter refers to the method used to
compute parameters of a prediction model using WLFs. In this pa-
per we focus on linear models for predicting heuristic functions for
search. More specifically, given a set of WLFs c1, . . . , cn, we aim to
find a set of weights w1, . . . , wn ∈ R that gives us the ‘best’ heuris-
tic function

∑
i∈[[n]] wici(s).

The original WLF paper experimented with two optimiser formu-
lations for computing linear models using Support Vector Machines
(SVR) and linear kernel Gaussian Process Regression (GPR), as well
as higher order kernel approaches. However, higher order kernels
yielded poorer performance, and similarly for other non-linear pre-
dictors such as XGBoost and neural networks from additional infor-
mal experiments. Our hypothesis for these observations is that WL
features are already generating sufficiently informative features such

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study 4657

that a linear model is best for generalisation and other approaches
lead to overfitting to the training label range.

In this paper, we focus on new linear models formulated by Linear
Regression with L1 regularisation (Lasso), and additional ranking
formulations: the Rank Support Vector Machine (rkSVM) setup for
learning heuristic functions introduced by Garrett et al. [20], a similar
formulation using Gaussian Process Classification (rkGPC) where
one replaces the SVM optimiser with a linear kernel GPC optimiser,
and the Linear Programming ranking formulation (rkLP) introduced
by Chen and Thiébaux [9].

6 Experiments

In this section, we perform a one million sample size experiment to
evaluate the effects of the various WLF hyperparameters covered in
Section 5 and summarised in Table 1 on learning and planning. The
source code, scripts for running the experiments, and appendix for
the paper are publicly available in [8].

Benchmarks Our benchmarks consist of the 10 domains and the
training and testing splits from the International Planning Competi-
tion Learning Track 2023 [59]. More specifically, the domains are
Blocksworld (BL), Childsnack (CH), Ferry (FE), Floortile (FL), Mi-
conic (MI), Rovers (RO), Satellite (SA), Sokoban (SO), Spanner
(SP), and Transport (TR). We generate optimal plans from the given
training tasks via the Scorpion planner [51] with a time limit of 30
minutes and 8GB memory limit for each training task on a cluster
with Intel Xeon Platinum 8274 CPUs. We note however that the me-
dian planning time of solved tasks lies in a few seconds for each
domain. Only states and their corresponding h∗ values in optimal
plan traces were used for non-ranking models (Lasso,GPR,SVR),
while both states and their siblings were used for ranking models
(rkLP,rkGPC,rkSVM). Each domain contains 90 testing tasks, for
a total of 900 testing tasks. Further benchmark details are provided in
Appendix A. We refer to previous work [11] for a detailed discussion
and comparison of learned WL heuristics with classical planners, as
the benchmarks are the same and this work focuses on the effect of
hyperparameters on WLF models.

Configurations Our experiments involve training various models
for learning heuristic functions for search. The configurations we ex-
periment with are all possible combinations of the 6 hyperparameters
discussed in the previous section. More specifically, the hyperparam-
eter options and their ranges are

(1) WL Algorithm: {WL,iWL,niWL,2-LWL},
(2) Iterations: {1,2,3,4,5,6,7,8},
(3) Feature Pruning: {none,i-mf},
(4) Hash Function: {mset,set},
(5) State Representation: {part,cmpl},
(6) Optimiser: {Lasso, GPR, SVR, rkLP, rkGPC, rkSVM}.

Model training for all configurations was given a memory limit of
8GB and 5 minutes. The 2-WL configuration was not included in the
results because their models were too memory intensive to train in
the given limits. Learned heuristic functions that use the cmpl state
representation were used with the Powerlifted search engine [12],
while those which used the part state representation were used with
Version 24.06 of the Fast Downward search engine. Models using the
part state representation were given the FDR input of a planning
task after at most 5 minutes of grounding [31]. The reason for using
different search engines is that profiling showed that a significant
proportion of planning time is spent on heuristic evaluation and not

successor generation. Due to the large volume of experiments and
resource constraints, all planning runs were given a 1 minute timeout
and 4GB memory limit. Feature pruning is not supported for the iWL
and niWL algorithms. In summary, we have 2× 8× 2× 2× 2× 6+
2×8×1×2×2×6 = 1152 different model configurations over 10
domains, and 900 problems. Thus, we have up to 1152×10 = 11520
learned models for up to 1152× 900 = 1036800 planning runs.

Which hyperparameters provide the smallest and fastest train-

ing models? The first two rows of Figure 3 illustrate distributions
of model size and training time of various models conditioned on dif-
ferent hyperparameter configurations. For all internal hyperparame-
ters (top half of Table 1), the ranking of model size and train time
is correlated. The most efficient configuration from each hyperpa-
rameter choice is (1) WL, (2) 1, (3) i-mf, (4) set, (5) part, and
(6) Lasso. These results are not too surprising as discussed in their
introductions. One note however is that ranking methods generally
take longer to train due to the introduction of pairwise comparisons
between data compared to regression methods (SVR, GPR, Lasso).

Which hyperparameters provide the overall best planning per-

formance? The third column of Figure 3 illustrates the distribution
of planning coverage of various models, while Table 2 displays the
scores of the best performing configuration, both conditioned on dif-
ferent hyperparameter configurations. The hyperparameters in each
group except Optimiser with the best median performance also match
those with the best maximal performance (MΣ column in Table 2).
This exception for the Optimiser group is because the best (rkSVM)
models are more expensive to train and thus its median performance
is degraded by configurations using other expensive hyperparam-
eters. Regardless, we decide that choosing hyperparameters based
on the best overall, maximal performance is the best starting point
as median performance is influenced by suboptimal hyperparame-
ter choices. To summarise from the data, the best overall choice of
hyperparameters for WLFs are (1) WL, (2) 1, (3) i-mf, (4) set, (5)
part, (6) rkSVM. We note that there are exceptions on a per domain
basis. This is the case for Feature Pruning and Iterations (none and
2 are better) for Blocksworld, State Representation (cmpl is better)
for Childsnack, and Optimiser (SVR is better) for Satellite. Appen-
dices B and C provide additional details and metrics concerning top
performing configurations and how they perform compared to the
original WLF configuration in [11].

Is there any correlation between training and planning metrics?

Our final question aims to answer whether training metrics give us a
sense of planning performance. In order to answer this question, we
analyse the Pearson’s correlation coefficient ρ between planning cov-
erage and optimiser evaluation function (Eval), training time (Time),
and model size (Size) summarised in Table 3, and more fine grained
results per domain provided in Appendix D. Unfortunately, we do
not find any statistically significant (p < 0.05), strong correlation
(|ρ| ≥ 0.5) between any training metric and planning performance
for any optimiser. This is not surprising for classical and statisti-
cal machine learning methods as in this study, which are bound to
the bias-variance tradeoff at least when analysing training evaluation
metrics. Related and concurrent work study model selection using
validation sets for policies [26].

7 Conclusion

In this paper, we have introduced several new hyperparameters as-
sociated with Weisfeiler-Leman Features (WLFs) in the context of
learning to plan. We focus on the task of learning heuristics in this

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study4658

ΣM MΣ BL CH FE FL MI RO SA SO SP TR

WL Algorithm‡

WL 513 447 66 47 66 3 88 45 51 33 64 50
iWL 326 311 24 30 50 3 58 31 31 30 38 31
niWL 336 314 28 31 50 2 58 32 31 31 38 35
2-LWL 321 285 31 30 48 2 54 30 30 28 37 31

Iterations‡,∗

1 497 447 50 47 66 3 88 45 51 33 64 50
2 474 421 66 47 65 3 83 37 35 33 63 42
3 464 404 66 45 65 3 81 34 36 33 63 38
4 448 410 57 42 64 2 79 34 37 33 63 37
5 453 400 58 44 63 2 78 34 42 33 62 37
6 439 396 55 40 63 2 77 33 40 32 62 35
7 434 402 55 39 62 2 75 32 40 32 62 35
8 432 400 52 41 62 1 74 32 40 32 62 36

Feature Pruning†

none 504 444 66 47 66 3 87 42 46 33 64 50
i-mf 492 447 50 46 66 3 88 45 51 33 63 47

Hash Function†

mset 502 440 66 46 65 3 88 43 50 33 64 44
set 512 447 66 47 66 3 87 45 51 33 64 50

State Repr.†

part 499 447 66 33 66 3 88 45 51 33 64 50
cmpl 444 418 62 47 63 2 64 30 46 32 61 37

Optimiser‡

Lasso 388 351 34 30 65 1 88 31 31 33 36 39
GPR 447 427 55 22 65 2 87 41 43 33 63 36
SVR 471 431 58 30 65 2 87 42 51 32 63 41
rkLP 498 437 66 47 66 3 88 40 44 33 64 47
rkGPC 480 401 66 45 65 3 86 41 31 33 63 47
rkSVM 506 447 66 46 66 3 87 45 46 33 64 50

Orig. Conf. [11] – 398 55 15 63 1 79 34 33 32 60 26
† The top value in the column is highlighted.
‡ The top 3 values per column are highlighted.
∗ The Feature Pruning option i-mf sometimes reduces the number of
iterations. These occurrences are omitted from the Iterations rows.

Table 2. Best performance (↑) conditioned on hyperparameter option and
planning domain. The ΣM column sums over the domain values, while the

MΣ column takes the maximum total coverage conditioned on the row
feature. The training timeout is 5 minutes and memory limit is 8GB. The
planning timeout is 60 seconds and memory limit is 4GB. The final row

(Orig. Conf.) corresponds to hyperparameters (WL, 4, none, mset, part,
GPR) in the original WLF paper [11] using the resource limits in this study.

Lasso GPR SVR rkLP rkGPC rkSVM

Eval [-.10, .00] [-.05, .06] [-.10, .01] [-.32, -.21] [.12, .25] [.07, .19]

Time [-.09, .01] [-.07, .04] [-.07, .04] [-.13, -.00] [-.15, -.02] [-.15, -.02]

Size [-.22, -.12] [-.20, -.09] [-.23, -.12] [-.30, -.18] [-.14, -.01] [-.38, -.27]

Table 3. Confidence intervals of Pearson’s correlation coefficient between
training metrics (rows) and planning coverage of optimisers (columns).

Statistically insignificant cells (p ≥ 0.05) are indicated in gray.

paper, although WLFs are agnostic to the downstream planning task.
We classified the WLF hyperparameters and performed an experi-
mental evaluation with a 1,000,000 sample size in order to under-
stand the effects of various hyperparameters. Our evaluation aimed to
answer three core questions related to the effect of hyperparameters
on (1) training, (2) planning, and (3) the correlation between training
and planning metrics in the context of learning to plan. Indeed, from

Figure 3. Boxplots of WLF counts (left, log-scale), training time in
seconds (middle, log-scale), and coverage (right) of WLF models

conditioned on hyperparameter options. Arrows indicate whether lower (↓)
or higher (↑) values are better. If no model is learned under the resource

constraints for a hyperparameter set, its model size and training time value is
set to 1e6 and 300, respectively.

our analysis we have identified a best set of hyperparameters with
almost consistent performance across different planning domains.

Acknowledgements The author thanks the anonymous reviewers
for their comments that helped improve this paper.

References

[1] N. Alvarez-Gonzalez, A. Kaltenbrunner, and V. Gómez. Improving
subgraph-gnns via edge-level ego-network encodings. Trans. Mach.
Learn. Res., 2024.

[2] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J. P.
Silva. The logical expressiveness of graph neural networks. In ICLR,
2020.

[3] P. Barceló, M. Galkin, C. Morris, and M. A. R. Orth. Weisfeiler and
leman go relational. In LoG, 2022.

[4] B. Bonet and H. Geffner. Qualitative numeric planning: Reductions and
complexity. J. Artif. Intell. Res., 69, 2020.

[5] B. Bonet, G. Francès, and H. Geffner. Learning features and abstract
actions for computing generalized plans. In AAAI, 2019.

[6] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identification. In FOCS, 1989.

[7] S. J. Celorrio, T. de la Rosa, S. Fernández, F. Fernández, and D. Borrajo.
A review of machine learning for automated planning. Knowl. Eng.
Rev., 27(4), 2012.

[8] D. Z. Chen. Weisfeiler-leman features for planning: A 1,000,000 sample
size hyperparameter study (source code and extended version), 2025.
URL https://doi.org/10.5281/zenodo.16452442.

[9] D. Z. Chen and S. Thiébaux. Graph learning for numeric planning. In
NeurIPS, 2024.

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study 4659

[10] D. Z. Chen, S. Thiébaux, and F. Trevizan. Learning domain-
independent heuristics for grounded and lifted planning. In AAAI, 2024.

[11] D. Z. Chen, F. Trevizan, and S. Thiébaux. Return to tradition: Learning
reliable heuristics with classical machine learning. In ICAPS, 2024.

[12] A. B. Corrêa, F. Pommerening, M. Helmert, and G. Francès. Lifted
successor generation using query optimization techniques. In ICAPS,
2020.

[13] A. B. Corrêa, A. G. Pereira, and J. Seipp. Classical planning with llm-
generated heuristics: Challenging the state of the art with python code.
CoRR, abs/2501.18784, 2025.

[14] Z. Cui, W. Kuang, and Y. Liu. Automatic verification for soundness of
bounded QNP abstractions for generalized planning. In IJCAI, 2023.

[15] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou. Neural logic
machines. In ICLR, 2019.

[16] D. Drexler, J. Seipp, and H. Geffner. Learning sketches for decompos-
ing planning problems into subproblems of bounded width. In ICAPS,
2022.

[17] D. Drexler, S. Ståhlberg, B. Bonet, and H. Geffner. Symmetries and
expressive requirements for learning general policies. In KR, 2024.

[18] G. Francès, A. B. Corrêa, C. Geissmann, and F. Pommerening. Gener-
alized potential heuristics for classical planning. In IJCAI, 2019.

[19] G. Francès, B. Bonet, and H. Geffner. Learning general planning poli-
cies from small examples without supervision. In AAAI, 2021.

[20] C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning to rank
for synthesizing planning heuristics. In IJCAI, 2016.

[21] H. Geffner and B. Bonet. A Concise Introduction to Models and Meth-
ods for Automated Planning. Morgan & Claypool Publishers, 2013.

[22] C. Gehring, M. Asai, R. Chitnis, T. Silver, L. P. Kaelbling, S. Sohrabi,
and M. Katz. Reinforcement learning for classical planning: Viewing
heuristics as dense reward generators. In ICAPS, 2022.

[23] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson,
M. Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun, and
D. Weld. Pddl – the planning domain definition language. Technical
report, 1998.

[24] C. Gretton and S. Thiébaux. Exploiting first-order regression in induc-
tive policy selection. In UAI, 2004.

[25] M. Grohe. The logic of graph neural networks. In LICS, 2021.
[26] T. P. Gros, N. J. Müller, D. Fišer, I. Valera, V. Wolf, and J. Hoffmann.

Per-domain generalizing policies: On validation instances and scaling
behavior. In ICAPS, 2025.

[27] E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, and P. Abbeel.
Learning generalized reactive policies using deep neural networks. In
ICAPS, 2018.

[28] M. Hao, F. Trevizan, S. Thiébaux, P. Ferber, and J. Hoffmann. Guiding
GBFS through learned pairwise rankings. In IJCAI, 2024.

[29] M. Hao, D. Z. Chen, F. Trevizan, and S. Thiebaux. Effective data gen-
eration and feature selection in learning for planning. In ECAI, 2025.

[30] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduc-
tion to the Planning Domain Definition Language. Morgan & Claypool
Publishers, 2019.

[31] M. Helmert. Concise finite-domain representations for PDDL planning
tasks. Artif. Intell., 173(5-6), 2009.

[32] Y. Hu and G. D. Giacomo. Generalized planning: Synthesizing plans
that work for multiple environments. In IJCAI, 2011.

[33] L. Illanes and S. A. McIlraith. Generalized planning via abstraction:
Arbitrary numbers of objects. In AAAI, 2019.

[34] R. Karia and S. Srivastava. Learning generalized relational heuristic
networks for model-agnostic planning. In AAAI, 2021.

[35] M. Katz, H. Kokel, K. Srinivas, and S. Sohrabi. Thought of search: Plan-
ning with language models through the lens of efficiency. In NeurIPS,
2024.

[36] R. Khardon. Learning action strategies for planning domains. Artif.
Intell., 113(1-2), 1999.

[37] N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph ker-
nels. Appl. Netw. Sci., 5(1), 2020.

[38] C. Lei, N. Lipovetzky, and K. A. Ehinger. Novelty and lifted helpful
actions in generalized planning. In SOCS, 2023.

[39] H. J. Levesque. Planning with loops. In IJCAI, 2005.
[40] M. Martín and H. Geffner. Learning generalized policies in planning

using concept languages. In KR, 2000.
[41] M. Martín and H. Geffner. Learning generalized policies from planning

examples using concept languages. Appl. Intell., 20(1), 2004.
[42] A. Micheli and A. Valentini. Synthesis of search heuristics for temporal

planning via reinforcement learning. In AAAI, 2021.
[43] C. Morris, K. Kersting, and P. Mutzel. Glocalized weisfeiler-lehman

graph kernels: Global-local feature maps of graphs. In ICDM, 2017.
[44] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,

and M. Grohe. Weisfeiler and leman go neural: Higher-order graph

neural networks. In AAAI, 2019.
[45] C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and leman go sparse:

Towards scalable higher-order graph embeddings. In NeurIPS, 2020.
[46] C. Morris, G. Rattan, S. Kiefer, and S. Ravanbakhsh. Speqnets:

Sparsity-aware permutation-equivariant graph networks. In ICML,
2022.

[47] N. Rossetti, M. Tummolo, A. E. Gerevini, L. Putelli, I. Serina,
M. Chiari, and M. Olivato. Learning general policies for planning
through GPT models. In ICAPS, 2024.

[48] J. Segovia-Aguas, S. Jiménez, and A. Jonsson. Generalized planning as
heuristic search. In ICAPS, 2021.

[49] J. Segovia-Aguas, S. J. Celorrio, L. Sebastiá, and A. Jonsson. Scaling-
up generalized planning as heuristic search with landmarks. In SOCS,
2022.

[50] J. Segovia-Aguas, S. J. Celorrio, and A. Jonsson. Generalized planning
as heuristic search: A new planning search-space that leverages pointers
over objects. Artif. Intell., 330, 2024.

[51] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for op-
timal classical planning. J. Artif. Intell. Res., 67, 2020.

[52] W. Shen, F. Trevizan, and S. Thiébaux. Learning Domain-Independent
Planning Heuristics with Hypergraph Networks. In ICAPS, 2020.

[53] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn.
Res., 12, 2011.

[54] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and
M. Katz. Generalized planning in pddl domains with pretrained large
language models. In AAAI, 2024.

[55] S. Srivastava, N. Immerman, and S. Zilberstein. Learning generalized
plans using abstract counting. In AAAI, 2008.

[56] S. Srivastava, N. Immerman, and S. Zilberstein. A new representation
and associated algorithms for generalized planning. Artif. Intell., 175
(2), 2011.

[57] S. Ståhlberg, B. Bonet, and H. Geffner. Learning general optimal poli-
cies with graph neural networks: Expressive power, transparency, and
limits. In ICAPS, 2022.

[58] S. Ståhlberg, B. Bonet, and H. Geffner. Learning general policies with
policy gradient methods. In KR, 2023.

[59] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fiser, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas,
and J. Seipp. The 2023 international planning competition. AI Mag., 45
(2), 2024.

[60] S. Toyer, F. W. Trevizan, S. Thiébaux, and L. Xie. Action schema net-
works: Generalised policies with deep learning. In AAAI, 2018.

[61] S. Toyer, S. Thiébaux, F. Trevizan, and L. Xie. Asnets: Deep learning
for generalised planning. J. Artif. Intell. Res., 68, 2020.

[62] A. Tuisov, Y. Vernik, and A. Shleyfman. Llm-generated heuristics for
AI planning: Do we even need domain-independence anymore? CoRR,
abs/2501.18784, 2025.

[63] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati. On
the planning abilities of large language models - A critical investigation.
In NeurIPS, 2023.

[64] K. Valmeekam, K. Stechly, and S. Kambhampati. Llms still can’t plan;
can lrms? A preliminary evaluation of openai’s o1 on planbench. CoRR,
abs/2409.13373, 2024.

[65] Q. Wang, D. Z. Chen, A. Wijesinghe, S. Li, and M. Farhan. N -wl: A
new hierarchy of expressivity for graph neural networks. In ICLR, 2023.

[66] R. Wang and F. Trevizan. Leveraging action relational structures for
integrated learning and planning. In ICAPS, 2025.

[67] B. Weisfeiler and A. Leman. A reduction of a graph to a canonical form
and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsiya, 2(9), 1968.

[68] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph
neural networks? In ICLR, 2019.

[69] R. Yang, T. Silver, A. Curtis, T. Lozano-Pérez, and L. P. Kaelbling. PG3:
policy-guided planning for generalized policy generation. In IJCAI,
2022.

[70] S. W. Yoon, A. Fern, and R. Givan. Learning control knowledge for
forward search planning. J. Mach. Learn. Res., 9, 2008.

[71] J. You, J. M. G. Selman, R. Ying, and J. Leskovec. Identity-aware graph
neural networks. In AAAI, 2021.

[72] M. J. Zhang. Learning for Planning Under Uncertainty: Predicting
Features of SSPs with Novel Graph Representation. Bachelor’s thesis,
The Australian National University, 2024.

[73] L. Zhao, N. Shah, and L. Akoglu. A practical, progressively-expressive
GNN. In NeurIPS, 2022.

D.Z. Chen / Weisfeiler-Leman Features for Planning: A 1,000,000 Sample Size Hyperparameter Study4660

