
Return to Tradition: Learning Reliable Heuristics with
Classical Machine Learning

Dillon Z. Chen Felipe Trevizan Sylvie Thiébaux

Problem Statement: Learning for Planning

1. learn from few number of small problems

2. evaluate on larger size problems

3. do not use any IPC planner during evaluation
Image credits: Subbarao Kambhampati

✓ ok:
▶ learn heuristic
▶ learn policy

✗ not ok:
▶ learn transformation + LAMA
▶ learn ∅ + LAMA
▶ learn portfolios of IPC planners
▶ train and test on Blocksworld

instances with 10 blocks

Question Time

Is deep learning the future for scaling up PDDL planning?

Related work 1/2. Deep Learning

✗ not explainable/interpretable

✗ data and computationally intensive; “profoundly uneconomical”1

✗ limited expressivity2,3

✗ evaluated on trivial problems, results for hard problems hidden

✗ falls majorly behind classical planners

1Michael Katz et al. Planning with Language Models Through The Lens of Efficiency. 2024. arXiv: 2404.11833.
2Simon St̊ahlberg, Blai Bonet, and Hector Geffner. “Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency,

and Limits”. In: ICAPS. 2022.
3Dillon Ze Chen, Sylvie Thiébaux, and Felipe Trevizan. “Learning Domain-Independent Heuristics for Grounded and Lifted Planning”. In: AAAI. 2024.

https://arxiv.org/abs/2404.11833

Related work 2/2. Symbolic Approaches

Description Logic Features1 + policy rules2/sketches3

↑ robust

↑ explainable and interpretable

↓ expressivity restricted by (compilation to) binary predicates

1Mario Mart́ın and Hector Geffner. “Learning Generalized Policies from Planning Examples Using Concept Languages”. In: Appl. Intell. (2004).
2Guillem Francès, Blai Bonet, and Hector Geffner. “Learning General Planning Policies from Small Examples Without Supervision”. In: AAAI. 2021.
3Dominik Drexler, Jendrik Seipp, and Hector Geffner. “Learning sketches for decomposing planning problems into subproblems of bounded width”. In:

ICAPS. 2022.

Contributions

1. methodology: new feature generation for planning

2. theory: provably more expressive than existing methods

3. experiments: competitive results on non-trivial benchmarks

1. Methodology: WL Features

New feature generator for planning states and problems

1. construct Instance Learning Graph (ILG) for a state

2. run modified Weisfeiler-Leman (WL) algorithm for generating features from ILGs

ILG rep.
on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We

WL alg.

ILG representation

improved OA1/Muninn=St̊ahlberg2 graph representation

▶ nodes: objects, facts true in s0, goal condition
▶ colours: node type, predicate, goal information
▶ single node for facts true in both state and goal
▶ Muninn/OA graph unnecessarily duplicates such nodes

▶ edges: objects connected to facts
▶ labels: location of instantiation of object

on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We

1Rostislav Horcik and Gustav Š́ır. “Expressiveness of Graph Neural Networks in Planning Domains”. In: ICAPS. 2024.
2Simon St̊ahlberg, Blai Bonet, and Hector Geffner. “Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency,

and Limits”. In: ICAPS. 2022.

WL algorithm

▶ iteratively refine colours of a graph based on message propagation

▶ hash function to compress neighbour colours

Image from [Shervashidze et al., JMLR-11]

∼ we modify WL to support edge labelled graphs

2. Theory: connections to related work

▶ Expressivity analysis

on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}
where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.

▶ detect indistinguishable pairs1

▶ Compare to 2 streams of learning for planning research

1. Graph Neural Network architectures (GNN ILG, Muninn)

2. Description Logic Features (DLF)

1Dillon Ze Chen, Sylvie Thiébaux, and Felipe Trevizan. “Learning Domain-Independent Heuristics for Grounded and Lifted Planning”. In: AAAI. 2024.

Theory: WL Features vs GNNs

▶ Thm 4.1: WLFs upper bound GNNs on ILGs

on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

Thm. 4.1
=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}
where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.

▶ Proof idea: WLFs upper bound GNNs

▶ Thm 4.2: WLFs/GNNs on ILGs are more expressive than Muninn1

▶ Proof idea: Muninn cannot learn ”achieved goals”

We denote DLF generators (Martı́n and Geffner 2000) by
DLFΘ :D → Rd where the parameters for DLF include
the maximum complexity length of its features. DLFs have
been used in several areas of learning for planning including
learning descending dead-end avoiding heuristics (Francès
et al. 2019), unsolvability heuristics (Ståhlberg, Francès,
and Seipp 2021) and policy sketches (Bonet, Francès, and
Geffner 2019; Drexler, Seipp, and Geffner 2022). Lastly, we
denote the architecture from Ståhlberg, Bonet, and Geffner
(2022) for generating features by MuninnΘ :D → Rd. We
omit their final MLP layer which transforms the vector fea-
ture into a heuristic estimate. Furthermore in our theorems,
we ignore their use of random node initialisation (RNI) (Ab-
boud et al. 2021). The original intent of RNI is to provide a
universal approximation theorem for GNNs but the practical
use of the theorem is limited by the assumption of exponen-
tial width layers and absence of generalisation results. Pa-
rameters for Muninn include hyperparameters for their GNN
architecture and learned weights for their update functions.

In all of the aforementioned models, the parameters Θ
consist of a combination of model hyperparameters and
trained parameters based on a training set TD ⊆ D. The
expressivity and distinguishing power of a feature generator
for planning determines if it can theoretically learn h∗ for
larger subsets of planning tasks. We begin with an applica-
tion of a well-known result connecting the expressivity of
the WL algorithm and GNNs for distinguishing graphs (Xu
et al. 2019) by extending it to edge-labelled graphs.

Theorem 4.1 (WLF ILG and GNN ILG have the same power
at distinguishing planning tasks.). Let Π1 and Π2 be any two
planning tasks from a given domain. If for a set of param-
eters Θ we have that GNN ILG

Θ (Π1) ̸= GNN ILG
Θ (Π2), then

there exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2). Conversely for all Φ such

that WLF ILG
Φ (Π1) ̸= WLF ILG

Φ (Π2), there exists Θ such
that GNN ILG

Θ (Π1) ̸= GNN ILG
Θ (Π2).

Proof. [⊆] The forward statement follows from (Xu et al.
2019, Lemma 3) which states that GNNs are at most as
expressive as the WL algorithm for distinguishing non-
isomorphic graphs. We can modify the lemma for the edge
labelled WL algorithm and GNNs which account for edge
features. Then the result follows after performing the trans-
formation of planning tasks into the ILG representation.

[⊇] The converse statement follows from (Xu et al. 2019,
Corollary 6) and modifying Eq. (4.1) of their GIN architec-
ture by introducing an MLP for each of the finite number
of edge labels in the ILG graph and summing their outputs
at each GIN layer. The MLPs have disjoint range in order
for injectivity to be preserved as to achieve the same distin-
guishing power of the edge labelled WL algorithm. This can
be easily enforced by increasing the hidden dimension size
and having each MLP to map to orthogonal dimensions.

We proceed to show that GNNs acting on ILGs is sim-
ilar to Muninn’s GNN architecture (Ståhlberg, Bonet, and
Geffner 2022). The idea of the proof is that encoding dif-
ferent predicates into the ILG representation is equivalent to
having different weights for message passing to and from

Q(a,a) Q(b,b) Q(a,b) Q(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a)

a b

(b) ILG of Π2

Q(a,a) Q(b,b) Qg(a,b) Qg(b,a)

a b

(c) Implicit Muninn graph of Π1

Q(a,b) Q(b,a) Qg(a,b) Qg(b,a)

a b

(d) Implicit Muninn graph of Π2

Figure 4: ILG and Muninn graph representations of tasks in
Thm. 4.2 [⊋].

different predicates in Muninn. However, we also show that
our model has strictly higher expressivity for distinguish
planning tasks due to explicitly encoding achieved goals.

Theorem 4.2 (GNN ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) ̸= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
GNN ILG

Φ (Π1) ̸= GNN ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with GNN ILG

Φ (Π1) ̸= GNN ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Proof. [⊇] In order to show the inclusion, we show that a
Muninn instance operating on a state can be expressed as a
GNN operating on the ILG representation of the state. More
explicitly, we show that the implicit graph representation of
planning states by Muninn is the same graph as ILG. The
message passing steps and initial node features are different
but the semantic meaning of executing both algorithms are
the same. The node features in the implicit graphs of Muninn
are all the same when ignoring random node initialisation.
Muninn differentiates object nodes and fact nodes by using
different message passing functions depending on whether a
node is an object or a fact, and depending on which predi-
cate the fact belongs to. In the language of ILG, Muninn’s
message passing step on fact nodes p = P (o1, . . . , onP

) is

hL+1
p = MLPP (h

L
o1 , . . . , h

L
onP

) (1)

where hL+1
p denotes the latent embedding of the node p in

the L + 1-th layer, hL
oi denotes the latent embedding of the

object node oi in the l-th layer, and MLPP is a multilayer
perceptron, with a different one for each predicate. The mes-
sage passing step of Muninn on object nodes oi is

hL+1
o = MLPU (h

L
o , {{hL

p | o ∈ p}}) (2)

where o ∈ p denotes that o is an argument of the predicate
associated with p. We note that having a different MLP in
the message passing step for different nodes is equivalent
to having a larger but identical MLP in the message pass-
ing step for all nodes. This is because the model can learn
to partition latent node features depending on their semantic

1Simon St̊ahlberg, Blai Bonet, and Hector Geffner. “Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency,

and Limits”. In: ICAPS. 2022.

Theory: WL Features vs DL Features

▶ Thm 4.4: WLFs and DLFs are incomparable
on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,

▶ Proof ideas:
▶ ∃ <

▶ DLF can distinguish some symmetric predicates
▶ WLF cannot

meaning and thus be able to use a single MLP function to
act as multiple different functions for different node feature
partitions. Thus, Eq. (1) and (2) can be imitated by a GNN
operating on ILG since ILG features differentiate nodes de-
pending on whether they correspond to an object, or a fact
associated with a predicate. Different edge labels in the ILG
allow it to distinguish the relationship between facts and ob-
jects depending on their position in the predicate argument.

[⊋] To see how GNN ILG is strictly more expressive
than Muninn, we consider the following pair of planning
tasks. The main idea is that Muninn does not keep track
of achieved goals and sometimes cannot even see that the
goal has been achieved. Let Π1 = ⟨P,O,A, s(1)0 , G⟩ and
Π2 = ⟨P,O,A, s(2)0 , G⟩ with P = {Q}, O = {a, b},
A = ∅, G = s

(2)
0 = {Q(a, b), Q(b, a)} and s

(1)
0 =

{Q(a, a), Q(b, b)}. Fig. 4 illustrates the ILG representation
and the implicitly defined edge-labelled graph representa-
tion in Muninn’s GNN architecture of Π1 and Π2. It is
clear that the ILG representation of Π1 and Π2 are differ-
ent and hence GNN ILG differentiates between Π1 and Π2.
On the other hand without RNI, Muninn sees the pair of
non-isomorphic graphs in Fig. 4(c) and (d). However, any
edge-labelled variant of the WL algorithm views the pair of
graphs as the same, and hence so does Muninn.

Corollary 4.3 (WLF ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) ̸= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Our next theorem shows that WLF ILG and DLF fea-
tures are incomparable, in the sense that there are pairs of
planning tasks that look equivalent to one model but not
the other. We use a similar counterexample to that used for
Muninn but with an extra predicate which WLF ILG does
not distinguish but DLF can. Conversely we use the fact
that DLFs are limited by the need to convert planning pred-
icates into binary predicates to construct a counterexample
pair of planning tasks with ternary predicates which DLF
views as the same whileWLF ILG does not.

Theorem 4.4 (WLF ILG and DLF are incomparable at
distinguishing planning tasks.). There exists a pair of
planning tasks Π1 and Π2 such that there exists Φ
with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

DLFΘ(Π1) = DLFΘ(Π2). Furthermore, there exists
a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with DLFΦ(Π1) ̸= DLFΦ(Π2) but for all Θ,
WLF ILG

Θ (Π1) =WLF ILG
Θ (Π2).

Proof. [∃<] We begin by describing a pair of planning
tasks Π1 and Π2 such thatWLF ILG

Θ (Π1) = WLF ILG
Θ (Π2)

for any set of parameters Θ but are distinguished by De-
scription Logics. Let Π1 = ⟨P,O,A, s10, G⟩ and Π2 =

Q(a,a) Q(b,b) W(a,b) W(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a) W(a,b) W(b,a)

a b

(b) ILG of Π1

Figure 5: ILG representations of tasks in Thm. 4.4 [∃<].

⟨P,O,A, s20, G⟩ with P = {Q,W}, O = {a, b}, A con-
tains the single action schema o = ⟨{x, y}, {Q(x, y)},
{W (x, y)}, ∅⟩, G = {W (a, b), W (b, a)}, s10 = {Q(a, a),
Q(b, b)} and s20 = {Q(a, b), Q(b, a)}.

We have that h∗(Π1) = ∞ as the problem Π1 is
unsolvable, while h∗(Π2) = 2 as the optimal plan
contains actions o(a, b) and o(b, a). DL features are
able to distinguish the two planning tasks by consid-
ering the role-value map (Q = W)(s) defined by
{x | ∀y : Q(x, y) ∈ s ⇐⇒ W (x, y) ∈ s}, and the corre-
sponding numerical feature |Q = W | (s) = |(Q = W)(s)|.
We have that |Q = W | (s10) = 0 and |Q = W | (s10) = 2,
meaning that DLF can distinguish between Π1 and Π2.

On the other hand, the ILG representations of Π1 and Π2

are indistinguishable to our definition of the edge-labelled
WL algorithm. Fig. 5 illustrates this example and we note
that it is similar to the implicit Muninn graph representations
of the pair of planning tasks from Thm. 4.2.

[∃>] We identify a pair of problems with ternary pred-
icates which compile to the same problem with only
binary predicates for which DL features are defined.
For problems with at most binary predicates, DL in-
troduces base roles on each predicate P (x, y) ∈ P
by P s = {(a, b) | P (a, b) ∈ s} where s is a plan-
ning state. Then given an n-ary predicate R(x1, . . . , xn),
DL introduces n(n − 1)/2 roles defined by Rs

i,j =
{(a, b) | ∃o1, . . . , oi−1, oi+1, . . . , oj−1, oj+1, . . . , on ∈ O,
R(o1, . . . , oi−1, a, oi+1, . . . , oj−1, b, oj+1, . . . , on) ∈ s}
for 1 ≤ i < j ≤ n. Now consider the problems Π1 =
⟨P,O,A, s10, G⟩ and Π2 = ⟨P,O,A, s20, G⟩ now with P =
{P}, O = {a, b, c, d}, A = ∅, G = {P (a, b, c)}, and

s10 = {P (a, b, a), P (c, b, c), P (a, d, c), P (c, d, a)}
s20 = {P (a, b, c), P (c, b, a), P (a, d, a), P (c, d, c)}.

We have that h∗(Π1) =∞ since there are no actions and
the initial state is not the goal condition, while h∗(Π2) = 0
since G ⊆ s20. The ILG for the two tasks are distinguished
by the WL algorithm as the ILG of Π1 has no achieved goal
colour while Π2 does. However, DL features view the two
states s10 and s20 as the same due after the compilation from
ternary to binary predicates:

P1,2(a, b) P1,2(a, d) P1,2(c, b) P1,2(c, d)
P1,3(a, a) P1,3(a, c) P1,3(c, a) P1,3(c, c)
P2,3(b, a) P2,3(b, c) P2,3(d, a) P2,3(d, c).

Thus any DL features will be the same for both s10 and s20
and thus cannot distinguish Π1 and Π2.

Our final theorem combines previous results and states
that there exist domains for which all feature generators de-
fined thus far are not powerful enough to perfect learn h∗.

▶ ∃ >

▶ DLF limited by compilation to binary predicates
▶ WLF can distinguish some ternary predicates

meaning and thus be able to use a single MLP function to
act as multiple different functions for different node feature
partitions. Thus, Eq. (1) and (2) can be imitated by a GNN
operating on ILG since ILG features differentiate nodes de-
pending on whether they correspond to an object, or a fact
associated with a predicate. Different edge labels in the ILG
allow it to distinguish the relationship between facts and ob-
jects depending on their position in the predicate argument.

[⊋] To see how GNN ILG is strictly more expressive
than Muninn, we consider the following pair of planning
tasks. The main idea is that Muninn does not keep track
of achieved goals and sometimes cannot even see that the
goal has been achieved. Let Π1 = ⟨P,O,A, s(1)0 , G⟩ and
Π2 = ⟨P,O,A, s(2)0 , G⟩ with P = {Q}, O = {a, b},
A = ∅, G = s

(2)
0 = {Q(a, b), Q(b, a)} and s

(1)
0 =

{Q(a, a), Q(b, b)}. Fig. 4 illustrates the ILG representation
and the implicitly defined edge-labelled graph representa-
tion in Muninn’s GNN architecture of Π1 and Π2. It is
clear that the ILG representation of Π1 and Π2 are differ-
ent and hence GNN ILG differentiates between Π1 and Π2.
On the other hand without RNI, Muninn sees the pair of
non-isomorphic graphs in Fig. 4(c) and (d). However, any
edge-labelled variant of the WL algorithm views the pair of
graphs as the same, and hence so does Muninn.

Corollary 4.3 (WLF ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) ̸= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Our next theorem shows that WLF ILG and DLF fea-
tures are incomparable, in the sense that there are pairs of
planning tasks that look equivalent to one model but not
the other. We use a similar counterexample to that used for
Muninn but with an extra predicate which WLF ILG does
not distinguish but DLF can. Conversely we use the fact
that DLFs are limited by the need to convert planning pred-
icates into binary predicates to construct a counterexample
pair of planning tasks with ternary predicates which DLF
views as the same whileWLF ILG does not.

Theorem 4.4 (WLF ILG and DLF are incomparable at
distinguishing planning tasks.). There exists a pair of
planning tasks Π1 and Π2 such that there exists Φ
with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

DLFΘ(Π1) = DLFΘ(Π2). Furthermore, there exists
a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with DLFΦ(Π1) ̸= DLFΦ(Π2) but for all Θ,
WLF ILG

Θ (Π1) =WLF ILG
Θ (Π2).

Proof. [∃<] We begin by describing a pair of planning
tasks Π1 and Π2 such thatWLF ILG

Θ (Π1) = WLF ILG
Θ (Π2)

for any set of parameters Θ but are distinguished by De-
scription Logics. Let Π1 = ⟨P,O,A, s10, G⟩ and Π2 =

Q(a,a) Q(b,b) W(a,b) W(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a) W(a,b) W(b,a)

a b

(b) ILG of Π1

Figure 5: ILG representations of tasks in Thm. 4.4 [∃<].

⟨P,O,A, s20, G⟩ with P = {Q,W}, O = {a, b}, A con-
tains the single action schema o = ⟨{x, y}, {Q(x, y)},
{W (x, y)}, ∅⟩, G = {W (a, b), W (b, a)}, s10 = {Q(a, a),
Q(b, b)} and s20 = {Q(a, b), Q(b, a)}.

We have that h∗(Π1) = ∞ as the problem Π1 is
unsolvable, while h∗(Π2) = 2 as the optimal plan
contains actions o(a, b) and o(b, a). DL features are
able to distinguish the two planning tasks by consid-
ering the role-value map (Q = W)(s) defined by
{x | ∀y : Q(x, y) ∈ s ⇐⇒ W (x, y) ∈ s}, and the corre-
sponding numerical feature |Q = W | (s) = |(Q = W)(s)|.
We have that |Q = W | (s10) = 0 and |Q = W | (s10) = 2,
meaning that DLF can distinguish between Π1 and Π2.

On the other hand, the ILG representations of Π1 and Π2

are indistinguishable to our definition of the edge-labelled
WL algorithm. Fig. 5 illustrates this example and we note
that it is similar to the implicit Muninn graph representations
of the pair of planning tasks from Thm. 4.2.

[∃>] We identify a pair of problems with ternary pred-
icates which compile to the same problem with only
binary predicates for which DL features are defined.
For problems with at most binary predicates, DL in-
troduces base roles on each predicate P (x, y) ∈ P
by P s = {(a, b) | P (a, b) ∈ s} where s is a plan-
ning state. Then given an n-ary predicate R(x1, . . . , xn),
DL introduces n(n − 1)/2 roles defined by Rs

i,j =
{(a, b) | ∃o1, . . . , oi−1, oi+1, . . . , oj−1, oj+1, . . . , on ∈ O,
R(o1, . . . , oi−1, a, oi+1, . . . , oj−1, b, oj+1, . . . , on) ∈ s}
for 1 ≤ i < j ≤ n. Now consider the problems Π1 =
⟨P,O,A, s10, G⟩ and Π2 = ⟨P,O,A, s20, G⟩ now with P =
{P}, O = {a, b, c, d}, A = ∅, G = {P (a, b, c)}, and

s10 = {P (a, b, a), P (c, b, c), P (a, d, c), P (c, d, a)}
s20 = {P (a, b, c), P (c, b, a), P (a, d, a), P (c, d, c)}.

We have that h∗(Π1) =∞ since there are no actions and
the initial state is not the goal condition, while h∗(Π2) = 0
since G ⊆ s20. The ILG for the two tasks are distinguished
by the WL algorithm as the ILG of Π1 has no achieved goal
colour while Π2 does. However, DL features view the two
states s10 and s20 as the same due after the compilation from
ternary to binary predicates:

P1,2(a, b) P1,2(a, d) P1,2(c, b) P1,2(c, d)
P1,3(a, a) P1,3(a, c) P1,3(c, a) P1,3(c, c)
P2,3(b, a) P2,3(b, c) P2,3(d, a) P2,3(d, c).

Thus any DL features will be the same for both s10 and s20
and thus cannot distinguish Π1 and Π2.

Our final theorem combines previous results and states
that there exist domains for which all feature generators de-
fined thus far are not powerful enough to perfect learn h∗.

Theory: summary

▶ key takeaway: WL Features (WLF) most expressive, alongside DLF

on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}
where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.

▶ but all features still have limited expressivity

3. Experiments
Recall:

1. learn from few number of small problems

2. evaluate on larger size problems

3. do not use any IPC planner during evaluation
Image credits: Subbarao Kambhampati

✓ ok:
▶ learn heuristic
▶ learn policy

✗ not ok:
▶ learn transformation + LAMA
▶ learn ∅ + LAMA
▶ learn portfolios of IPC planners
▶ train and test on Blocksworld

instances with 10 blocks

Experiments: setup

▶ IPC 2023 Learning Track (10 domains, 900 problems)
▶ 8GB memory; 1800s runtime
▶ GPU for NN models; single core CPU otherwise
▶ give all learners the same optimal training plans (< 99 per domain)

bl
oc

ks
wo

rld

ch
ild

sn
ac

k

fe
rry

flo
or

til
e

m
ico

ni
c

ro
ve

rs

sa
te

llit
e

so
ko

ba
n

sp
an

ne
r

tra
ns

po
rt

102

103

104

Nu
m

be
r o

f O
bj

ec
ts

train
test

Train and problem sizes for each domain. Note the log scale.

Experiments: baselines

▶ LAMA

▶ hFF

▶ Muninn

▶ new: GNN on ILGs

▶ new: WLF on ILGs + Gaussian Process Regression

All single-queue GBFS except LAMA

Experiments: coverage results on IPC 2023 Learning Track

▶ higher = better ↑

Muninn GNNILG h ff WLFILG + GPR LAMA WLFILG + MIP0

200

400

600
So

lv
ed

1. ILG encoding improves on Muninn encoding
2. WLF outperforms GNNs
3. WLF competitive with LAMA

theory matches practice

Experiments: real world planning problem

▶ Beluga Logistics Planning (Airbus)
▶ training data not chosen by me

LAMA Scorpion Maidu
(ipc23 winner)

WLF0

500

1000

So
lv

ed
Acknowledgements: Rebecca Eifler for PDDL encodings and training data

Many Other Results

▶ explainable features
c0 : (ag,on-table)
achieved on-table goal

c1 : ob
block

c2 : (ag,on)
achieved on goal

c3 : (c0,{{(c1,0)}})
achieved on-table goal

c4:(c1,{{(c0,0),(c2,1)}})
block correctly on table
with correct block above

c5:(c2,{{(c1,0),(c1,1)}})
achieved on goal

c6 : (c3,{{(c4,0)}})
block correctly on table
with correct block above

c7 : (c4,{{(c3,0),(c5,1)}})
block correctly on table
with correct block above

c8 : (c6,{{(c7,0)}})
block correctly on table
with correct block above

Figure 7: The dependency subgraph of generated WL fea-
tures on Blocksworld. The first row of each node indicates
the feature colour, followed by the initial colour the feature
corresponds to or the input to the hash function which gen-
erated the colour. The second row describes the semantic
meaning of the feature. Edges describe the dependency of
the feature on previous features based on the hash function.

tistically significant strong correlation between the heuristic
estimate error and the GPR variance outputs. This is reason-
able given that the derivation of the Bayesian model com-
putes the uncertainty on its output prediction. The story is
different for the number of expansions during search where
for easy problems there is no significant correlation depend-
ing on the domain. Interestingly, the correlation is more sig-
nificant and stronger on harder problems for more domains.
Thus, the Bayesian model is able to determine the difficulty
of solving a problem within a domain by looking at the pre-
dicted standard deviation for h(s0) but the quality of this
prediction will depend on the domain.

Understanding Learned Models
Another advantage of WL-GOOSE is that its set of features
is explainable, and it is possible to see which features are
chosen when using a linear inference model. The models
can be understood by analysing the features with the highest
corresponding linear weights, and by observing the distri-
bution of such weights. The semantic meaning of the fea-
tures can be understood by examining the generation of WL
colours. This can be achieved by representing the observed
WL colours as a directed acyclic graph (DAG) where each
WL colour is a node and there is a directed edge from κ to
κ′ if κ′ = hash(x,M) and x = κ or ∃ι, (κ, ι) ∈M . We pro-
vide an example of how to interpret the learned models by
briefly studying the learned GPR model on Blocksworld. In
this domain, a total of 10444 features were generated from
the training data and Fig. 7 illustrates the DAG representa-
tion of feature c8’s generation. Consider feature c4 in Fig. 7,
it computes the number of blocks that are correctly on the
table and also have the correct block above it. We have that
c4 = hash(c1, {{(c0, 0), (c2, 1)}}), meaning that the colour
c4 is generated from an object node (c1 = ob) which is
part of an achieved on-table goal (c0 = (ag, on-table)) and

achieved on goal (c2 = (ag, on)). The corresponding edge
label of the node colours indicate the position of the block
object in the proposition indexed from 0. Thus, blocks b with
colour c4 are in the first and only argument of on-table and
the second argument of on. This means that the colour c4 is
assigned to blocks correctly on the table and correctly un-
derneath another block.

Moreover, we observed that certain subsets of features
were evaluated to the same value on all training states. As
a result, the same learned weight value was assigned to each
feature in these subsets. This can be seen in Fig. 7 where fea-
tures c4, c7, c6 and c8 are semantically equivalent. The sum
of their weight values is −1.76, the largest in value from
subsets of features. Thus, the learned weight rewards states
satisfying this condition as blocks correctly on the table do
not have to be moved.

Note that it is possible for features to evaluate to the
same values on the training set but have different semantic
meanings because the training set is finite. For example, in
Blocksworld, a training set may satisfy that a block is cor-
rectly on the table if and only if it has the correct block above
it. In this case, the count of colours c0 and c4 would be the
same on all states despite not being semantically equivalent.

6 Conclusion
We introduced WL-GOOSE, a novel approach that makes
use of the efficiency of classical machine learning for learn-
ing to plan. We developed the Instance Learning Graph
(ILG), a novel representation of lifted planning tasks and
provided a method to generate features for ILGs based on
the WL algorithm, agnostic to the downstream model. Sim-
ilar to Description Logic Features for planning, our gen-
erated features are agnostic to the learning target and can
be used without the need for backpropagation. Furthermore,

only some of
the models
are deter-
ministically
trained

some of our models can be trained in a deterministic fashion
with minimal parameter tuning in contrast to DL-based ap-
proaches. To validate the benefits of WL-GOOSE, we used
two classical SML models, support vector regression (SVR)
and Gaussian process regression (GPR), to learn domain-
specific heuristics and compared them to the state of the art.

The experimental results showed that WL-GOOSE can
efficiently and reliably learn domain-specific heuristics from
scratch. Compared to GNNs applied to ILGs, our learned
heuristics are up to 3 orders of magnitude times faster to
train and have up to 2 orders of magnitude fewer parameters.
Our results also showed that both SVR and GPR are the first
learned heuristics capable of outperforming hFF in terms of
total coverage. Moreover, our learned heuristics outperform
or tie with LAMA on 4 domains and, to our knowledge,
this is the best performance of learned heuristics against
LAMA. We also showed the theoretical connections be-
tween our novel feature generation method with Description
Logic Features and GNNs. Our future work agenda includes

added more
future direc-
tions

exploring how to best use the uncertainty bounds provided
by GPR to improve search, making use of generated WL
features for learning different forms of domain knowledge
such as policies, landmarks and sketches (Bonet and Geffner
2021), and combining stronger satisficing search algorithms
to further improve the performance of WL-GOOSE.

▶ correlation results

▶ super fast training

▶ very small models

Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning
Dillon Z. Chen, Felipe Trevizan, Sylvie Thiébaux

New feature generation for planning, and SOTA results in learning for planning

(1) New feature generation method for planning tasks

ILG rep.
on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We

WL alg.

(2) Theoretical comparison to Graph Neural Networks
and Description Logic Features for planning

on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;
(ag, P), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃

ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}
where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.

(3) State-of-the-art results on competition benchmarks
▶ 2 orders of magnitude fewer parameters than GNN models
▶ 3 orders of magnitude faster training than GNN models
▶ 1st learned heuristics to outperform hFF and match LAMA in a

non-trivial competition setting

Muninn GNNILG h ff WLFILG + GPR LAMA WLFILG + MIP0

200

400

600

So
lv

ed

Code at https://github.com/DillonZChen/goose

(∗) WL Features available as a Python/C++ package
▶ pip install wlplan
▶ https://github.com/DillonZChen/wlplan

Thanks! Questions?

https://github.com/DillonZChen/goose
https://github.com/DillonZChen/wlplan

