

The problem we are solving.

- Learning for domain-specific planning
- Train models on small problems
- Test on large problems. e.g.

Contributions

- 1. Automatic feature generation for planning tasks
- 2. Theoretical comparisons to related work
- 3. Experiments

1. New WL Features for Planning

•new: construct *Instance Learning Graph* for states

•run Weisfeiler-Leman (WL) algorithm for edge-labelled graphs

•WL algorithm idea: iteratively refine node colours based on neighbouring nodes (image from [3])

- + Feature vectors <u>agnostic</u> to downstream model
- + Fast to train (<u>up to 900x faster</u> than GNNs) + generate
- + Few parameters (<u>up to 600x fewer</u> than GNNs)
- + State-of-the-art expressivity (see 2.)
- + Explainable features

ICaps Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning

Dillon Z. Chen^{1,2} Felipe Trevizan² Sylvie Thiébaux^{1,2} ¹LAAS-CNRS, Université de Toulouse, ²Australian National University dillon.chen@laas.fr, felipe.trevizan@anu.edu.au, sylvie.thiebaux@laas.fr

train small Blocksworld

test large Blocksworld

Deep Learning for Planning is Overrated

Neural Networks

Expensive to train and use

Non-deterministic optimisation Not explainable

• GNNS

Research saturated on molecular datasets

Limited expressivity [1]

New models barely beat 1-WL and expensive

• Transformers

Discount GNNs + an ordering on nodes

Claims often exaggerated and overstated [2]

Poor generalisation

Explainable Features

features understood by analysing dependency graph e.g. Blocksworld; largest feature in trained model: "number of blocks correctly on table with correct block above it"

✤weight of -1.76,

 \Rightarrow rewards correct blocks on table

• WLF = new contribution

3. Experiments

- IPC 2023 Learning Track
- train and test set sizes \rightarrow

Domain	h ^{FF}	Muninn	GNN- GOOSE	
blocksworld	28	53	63	
childsnack	26	12	23	
ferry	68	38	70	
floortile	<u>12</u>	1	0	
miconic	<u>90</u>	<u>90</u>	89	
rovers	34	24	26	
satellite	65	16	31	
sokoban	36	31	33	
spanner	30	<u>76</u>	46	
transport	41	24	32	
all	430	365	413	
IPC score	393.5	328.9	391.0	

[1] Ryoma Sato. A Survey on The Expressive Power of Graph Neural Networks. arXiv 2020 [2] Rylan Schaeffer, Brando Miranda, Sanmi Koyejo. Are Emergent Abilities of Large Language Models a Mirage? NeurIPS 2023 [3] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, Karsten M. Borgwardt. Weisfeiler-Lehman Graph Kernels. J. Mach. Learn. Res. 2011 [4] Mario Martín, Hector Geffner. Learning Generalized Policies from Planning Examples Using Concept Languages. Appl. Intell. 2004 [5] Simon Ståhlberg, Blai Bonet, Hector Geffner. Learning General Optimal Policies with Graph Neural Networks: Expressive Power, *Transparency, and Limits.* ICAPS 2022

WLF-GOOSE

Université de Toulouse

