

Background

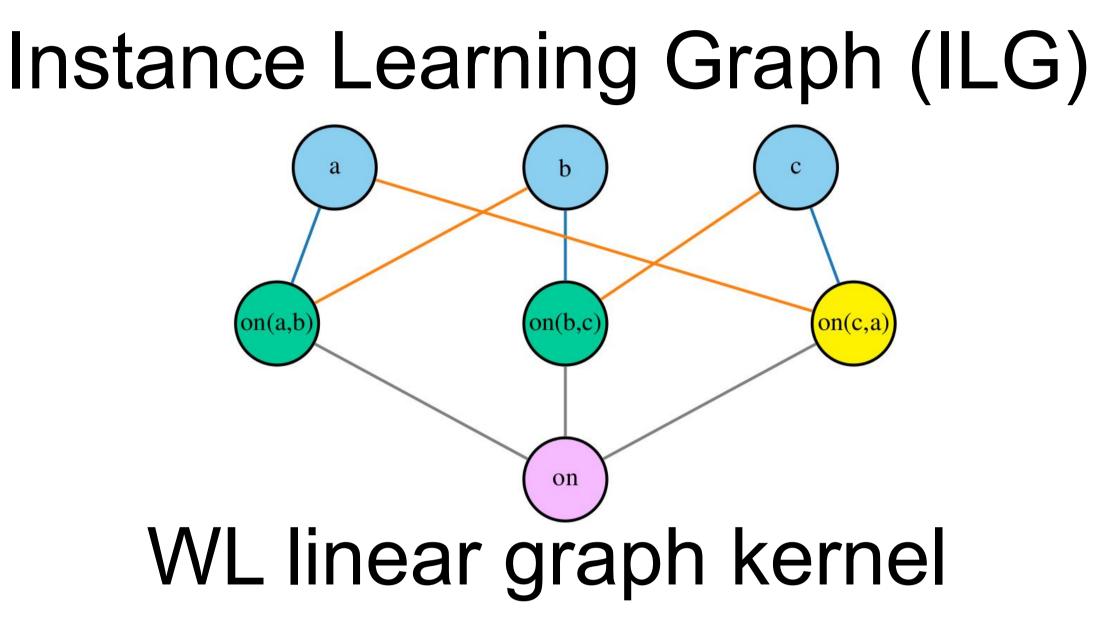
- **Classical planning**: find a sequence of actions from an initial state to a goal state in a huge implicitly defined transition system
- State of the art: • at the core, heuristic search

• Domain-independent heuristics: solve a relaxation of the planning task

- Learning heuristics:
 - use an ML model to learn heuristics from training data, usually in a domain-dependent fashion
 - recent works focused on deep learning methods
 - learners still not competitive with classical planners

Contributions

- <u>novel statistical machine learning method</u> for learning heuristics
- state of the art results for learning heuristics for planning
- discussion and experimental <u>comparison between GNNs</u> and GKs for learning heuristics


Future Work

- theoretical connections with description logic features [Martin and Geffner, Appl. Intell. 04] and previous GNN networks [Ståhlberg and Bonet and Geffner, ICAPS 22]
- explore statistical machine learning methods (kernelised and/or Bayesian linear regression ... Gaussian Processes)
- learn robust heuristics or policies with WL features


Graph Neural Networks and Graph Kernels For Learning Heuristics: Is there a difference?

Dillon Z. Chen^{1,2} Felipe Trevizan² Sylvie Thiébaux^{1,2} ¹LAAS-CNRS, ²Australian National University

Graph Kernels for Learning Heuristics

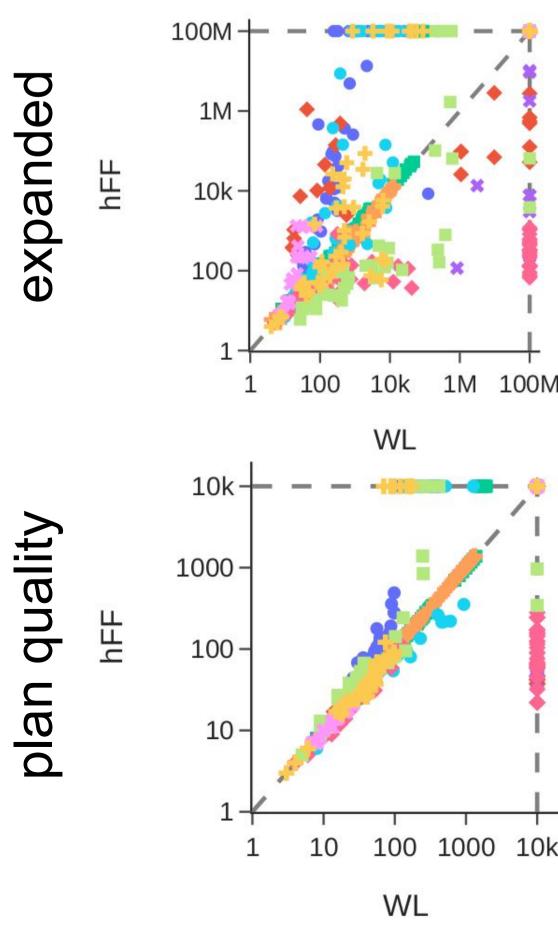
Given labeled graphs G and G' 4,1135 $\mathbf{1}$ 1,A 1st iteration Result of step 3: label compression

 $k_{WLsubtree}^{(1)}(G,G') = \langle \varphi_{WLsubtree}^{(1)}(G), \varphi_{WLsubtree}^{(1)}(G') \rangle = 11.$

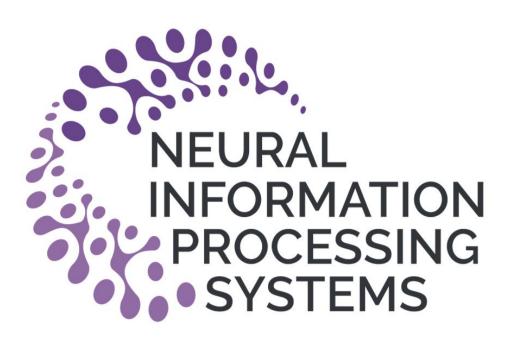
(figure from [Shervashidze et al., JMLR 2011])

based on the WL algorithm for approximating the graph isomorphism problem

Algorithm 1: WL algorithm

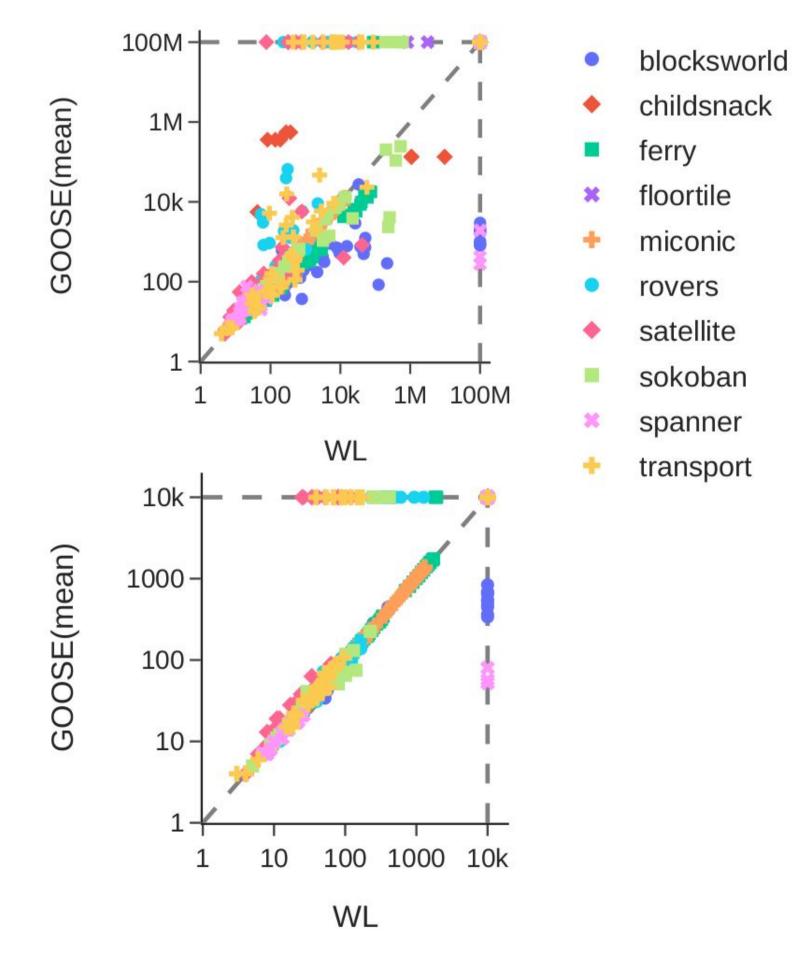

- **Data:** A graph $G = \langle V, E, c \rangle$, hash function f, and number of WL iterations h. Result: Multiset of colours. 1 $c^{(0)}(v) \leftarrow c(v), \quad \forall v \in V$
- 2 for j = 1, ..., h do $c^{(j)}(v) \leftarrow f(c^{(j-1)}(v), \{\!\!\{c^{(j-1)}(v), d\}\!\}$
- 3 return $\bigcup_{j=0,...,h} \{\!\!\{ c^{(j)}(v) \mid v \in V \}\!\!\}$

Search Guidance Performance


- 2023 competitor), GNN-GOOSE
- New model: WL-GOOSE
- Setup: 8Gb memory, 30 minutes timeout

coverage

			Ŭ					•					
				GOOSE							GOOSE		
Domain	blind	$h^{ m FF}$	Muninn	GNN(max)	GNN(mean)	WL	Domain	blind	$h^{ m FF}$	Muninn	GNN(max)	GNN(mean)	WL
blocksworld	8	28	40	49	58	49	blocksworld	8.0	14.1	40.0	45.6	52.7	44.4
childsnack	9	26	11	19	20	20	childsnack	9.0	20.1	11.0	17.6	19.9	18.9
ferry	10	68	46	64	72	74	ferry	10.0	67.6	46.0	63.9	71.9	73.6
floortile	2	12	·	-	-	2	floortile	2.0	11.2	-	-	-	1.8
miconic	30	90	30	90	90	90	miconic	30.0	88.5	30.0	89.2	89.1	89.0
rovers	15	34	15	25	29	45	rovers	15.0	32.7	14.2	19.7	24.8	36.4
satellite	12	65	18	31	29	37	satellite	12.0	63.8	18.0	24.6	21.6	32.9
sokoban	27	36	26	32	33	37	sokoban	27.0	26.3	24.3	28.3	30.0	33.1
spanner	30	30	32	30	33	30	spanner	30.0	30.0	32.0	30.0	33.0	27.6
transport	9	41	17	38	35	49	transport	9.0	39.3	17.0	35.6	31.6	46.3
sum	152	430	235	378	399	433	sum	152.0	393.5	232.4	354.5	374.6	404.0



$$(u) \mid u \in \mathcal{N}(v) \}$$
, $\forall v \in V ;$

• Benchmarks: IPC 2023 Learning Track setup • **Baselines:** blind search, h^{FF}, Muninn (IPC

competition score

(top left triangles = better for WL-GOOSE)