

Background

see Graph Neural Networks and Graph Kernels For Learning Heuristics: Is there a difference?

Contributions

- first graph representation of lifted planning tasks for learning domain-independent heuristics
- theoretical expressivity results for learning domain-independent heuristics
- large scale training of domain-independent heuristics on IPC dataset, consisting of 30000 states

Theoretical Expressivity Results

GNNs

- + can learn h^{add}/h^{max} on grounded graphs [Thm. 4.1] Pf: encode VI into GNNs + universal approximation theorem
- cannot learn h^{add}/h^{max} on lifted graphs [Thm. 4.3]
- cannot learn h⁺ and h^{*} [Thm. 4.4]
- cannot learn an approximation of h^+ and h^* [Thm. 4.5] Pf: counterexample tasks
- *note:* these are worst case scenarios; it is possible to learn h⁺ or h^{*} on subclasses of planning problems

GOOSE: Learning Domain-Independent Heuristics

Dillon Z. Chen^{1,2} Sylvie Thiébaux^{1,2} Felipe Trevizan² ¹LAAS-CNRS, ²Australian National University

Domain-Independent Graphs for Planning Tasks

action schema

Grounded vs Lifted Graphs Grounded graphs: SLG, FLG

- + more informative for domain-independent learning
- large and slow to construct and evaluate

Lifted graphs: LLG

- + small and quick to evaluate
- + can be used with planners which do not ground
- less informative for domain-independent learning

Search Guidance Performance

Training setting: given a planning domain *d* • domain-dependent (DD): train on small tasks from d • domain-independent (DI): train on tasks not from d

Testing setting:

- 4 message passing layers, max aggregator

		baseline					domain-dep.		
	blind	${ m FD}$ - $h^{ m FF}$	S-HGN	DLG-DD	DLG-DI	SLG	FLG	DLLG	
blocks (90)	-	19	-	15	6	10	11	29	
ferry (90)	-	90	-	4	3	33	33	78	
gripper (18)	1	18	-	3	6	5	9	18	
n-puzzle (50)	-	36	-	4	1	10	10	1	
sokoban (90)	74	90	-	12	37	52	56	34	
spanner (90)	-	-	-	-	-	-	-	55	
visitall (90)	-	6	-	41	15	52	35	39	
visitsome (90)	3	26	-:)	73	25	78	23	3	

- no graph planner best overall
 - LLG best for DD; SLG best for DI
- better than blind search (except Sokoban)

- requires grounded representation of planning tasks

• eager GBFS, GPUs w/ batch evaluation, 600s timeout

domain-independent heuristics somewhat informative