Learning Domain-Independent Heuristics for Grounded and Lifted Planning

Dillon Z. Chen 1,2 , Sylvie Thiébaux 1,2 , Felipe Trevizan 2

¹LAAS-CNRS, Université de Toulouse, ²Australian National University {dillon.chen, sylvie.thiebaux}@laas.fr felipe.trevizan@anu.edu.au

AAAI 2024

What are we doing: learning for planning

Learn policies/heuristics that generalise

- to problems of larger size
- domain-dependent learning; e.g.

train small Blocksworld

test large Blocksworld

- to problems from different domains; e.g.
- domain-independent learning; e.g.

train Blocksworld

test Towers of Hanoi

What are we not doing:

Reinforcement Learning (RL)

sample inefficient

does not exploit model structure

poor generalisation and scaling to larger problems

Large Language Models (LLMs)

- not reasoning on logic; memorise word semantics
- no correctness guarantees
- poor generalisation and scaling to larger problems

Prerequisites

AI Planning

- find a sequence of executable actions that achieve a goal
- requires long range reasoning over very large state space
- makes use of predicate logic

Graph Neural Networks (GNNs)

- message passing paradigm
- allow for arbitrary input graphs with fixed feature dimension
- we focus on Message Passing Neural Networks (MPNNs)

- 1. representation: domain-independent planning graphs
- 2. theory: what heuristics can we learn?
- 3. implementation: GOOSE planner
- 4. experiments: state-of-the-art domain-dependent and

-independent learning results

1. New domain-independent planning graphs

• graph representations of planning tasks \rightarrow input into GNN

STRIPS Learning Graph (SLG)

STRIPS planning task: $\langle P, A, s_0, G \rangle$

- nodes: propositions + actions
- features: node type + presence of proposition in s_0 or G
- edges: pre add del
- learning version of STRIPS PDG [Shleyfman et al., AAAI-15]

Finite domain representation Learning Graph (FLG)

FDR planning task: $\langle \mathcal{V}, A, s_0, G \rangle$

- nodes: variables + domain values + actions
- features: node type + value in s₀ and G
- edges: values, pre effect
- learning version of FDR PDG [Pochter et al., AAAI-11]

Lifted Learning Graph (LLG)

lifted planning task: $\langle \mathcal{P}, \mathcal{O}, \mathcal{A}, \textbf{s}_{0}, \textbf{G} \rangle$

- graphs encode action schemata instead of actions
- only propositions are those in s₀ and G
- node features and edges encode position of objects in the predicate arguments

2. Theoretical results: what heuristics can they learn?

- expressivity analysis of GNNs operating on planning graphs
- domain-independent heuristics we can(not) learn
- proof techniques applicable to other learning for planning architectures e.g. (LLM, RL)

2a. Positive results

Theorem

MPNNs operating on grounded graphs (SLG and FLG) are more expressive than STRIPS-HGN [Shen et al., ICAPS-20]

Proof idea: STRIPS-HGN do not encode delete effects

Theorem

MPNNs operating on grounded graphs can learn h^{add} and h^{max}

- Proof idea: encode Value Iteration into MPNNs + approximation theorem
- practicality? not much

2b. Negative results

Theorem

MPNNs operating on lifted graphs (LLG) cannot learn h^{add} , h^{max} , h^+ and h^*

- Proof idea: counterexample
- a pair of planning tasks with different heuristic values but appear the same to MPNNs operating on their LLG representation
- thus, "scaling" your NN architecture is pointless

Theorem

MPNNs operating on grounded graphs cannot learn h^+ and h^* nor any approximation

Proof idea: class of counterexamples

- ▶ possible to learn *h*^{*} for subclasses of planning tasks [1]
- do not need perfect predictions
- can still perform well on GBFS with inaccurate heuristics

[1] Ståhlberg, S., Bonet, B., Geffner, H. (2022). Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits. In *ICAPS*.

3. GOOSE architecture

- $1. \,$ states converted to graphs
 - one of SLG, FLG, LLG
- 2. graphs fed into a GNN with learned parameters
 - ▶ RGCN [Schlichtkrull et al., ESWC-18] for edge-labelled graphs
- 3. GPU batch evaluate only¹ successor states
 - backend search in Fast Downward implementation of GBFS

Code at https://github.com/DillonZChen/goose

¹Doing more is suboptimal and is made worse with lazy evaluation GBFS.

4. Experiments: Learning paradigms

Domain-Independent Learning [Shen et al., ICAPS-20]

- **do not** train on evaluation domain
- learn to solve arbitrary planning problems; "zero shot learning"

Domain-Dependent Learning

- train on very small tasks from the evaluation domain
- learn to solve specific planning problems

- blind: breadth first search
- h^{FF} : GBFS with the h^{FF} heuristic
- HGN: STRIPS-HGN trained in domain-dependent fashion

4a. Domain-Independent Learning

- train on tasks not from evaluation domain
- training: {IPC benchmarks} \ {evaluation domains}
- testing: number of objects² from 15-100

	b	aselin	es	(GOOSI	Е
	blind	$\boldsymbol{h}^{\mathrm{FF}}$	HGN	SLG	FLG	LLG
blocks (90)	-	19	-	9	8	6
ferry (90)	-	90	-	28	22	2
gripper (18)	1	18	5	5	3	9
n-puzzle (50)	-	36	-	6	3	-
sokoban (90)	74	90	10	45	40	15
spanner (90)	-	-	-	-	-	-
visitall (90)	-	6	25	16	41	-
visitsome (90)	3	26	33	73	65	15

hyperparameters: 8 GNN layers, mean aggr.

²except *n*-puzzle and Sokoban

4b. Domain-Dependent Learning

- train on tasks from the same evaluation domain
- training: number of objects³ from 2-10
- testing: number of objects³ from 15-100

	b	aselin	es	(GOOSI	Е
	blind	$\boldsymbol{h}^{\mathrm{FF}}$	HGN	SLG	FLG	LLG
blocks (90)	-	19	-	-	6	62
ferry (90)	-	90	-	32	33	88
gripper (18)	1	18	5	9	6	18
n-puzzle (50)	-	36	-	10	10	-
sokoban (90)	74	90	10	31	29	34
spanner (90)	-	-	-	-	-	60
visitall (90)	-	6	25	46	50	44
visitsome (90)	3	26	33	72	39	65

hyperparameters: 8 GNN layers, mean aggr.

³except *n*-puzzle and Sokoban

4c. IPC 2023 Learning Track results

- domain-dependent learning
- planners:
 - h^{FF}: classical planner
 - GOOSE: deep learning
 - WL-GOOSE [2]: classical ML

Domain	$h^{\rm FF}$	GOOSE	WL-GOOSE
blocksworld	28	63.0	77
childsnack	26	23.2	30
ferry	68	70.0	76
floortile	12	0.0	2
miconic	90	88.6	90
rovers	34	25.6	37
satellite	65	31.0	57
sokoban	36	33.0	38
spanner	30	46.4	<u>74</u>
transport	41	32.4	32
sum coverage	430	413.2	513
sum IPC score	393.5	391.0	471.2

[2] Chen, D. Z., Trevizan, F., Thiébaux, S. (2024). Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning. In *ICAPS*.

Learning Domain-Independent Heuristics for Grounded and Lifted Planning Dillon Z. Chen, Sylvie Thiébaux, Felipe Trevizan

Theoretical and SOTA experimental results in learning heuristics for domain-dependent and -independent planning

1. New graph representations of planning tasks for learning

2. Theoretical Results

Poster 639

3. GOOSE 4. State-of-the-art Results	s
--------------------------------------	---

	b	aseline	s	domain-dep.		domain-ind.					80		
	blind	$h^{\rm FF}$	HGN	SLG	FLG	LLG	SLG	FLG	LLG	Domain	Ŀ,	00081	MLO
blocks (90)		19			6	62	9	8	6	Necksworld	28	63.0	77
ferry (90)		90		32	33	88	28	22	2	ferry	- 20	70.0	76
gripper (18)	1	18	5	9	6	18	5	3	9	floortile	12	0.0	2
n-puzzle (50)		36		10	10		6	3		IDVID.	34	25.6	37
sokoban (90)	74	90	10	31	29	34	45	40	15	satellite	65	31.0	57
spanner (90)					-	60				spanner	30	46.4	74
visitall (90)		6	25	46	50	44	16	41		transport	41	32.4	32
visitsome (90)	3	26	33	72	39	65	73	65	15	sam coverage sam IPC score	430	413.2 391.0	513 471.2

Code at https://github.com/DillonZChen/goose

Thanks! Questions?