
Learning Domain-Independent Heuristics for
Grounded and Lifted Planning

Dillon Z. Chen1,2, Sylvie Thiébaux1,2, Felipe Trevizan2

1LAAS-CNRS, Université de Toulouse, 2Australian National University
{dillon.chen, sylvie.thiebaux}@laas.fr

felipe.trevizan@anu.edu.au

AAAI 2024

1 / 20

What are we doing: learning for planning

Learn policies/heuristics that generalise
▶ to problems of larger size
▶ domain-dependent learning; e.g.

train small Blocksworld test large Blocksworld

▶ to problems from different domains; e.g.
▶ domain-independent learning; e.g.

train Blocksworld test Towers of Hanoi

2 / 20

What are we not doing:

Reinforcement Learning (RL)

▶ sample inefficient

▶ does not exploit model structure

▶ poor generalisation and scaling to larger problems

Large Language Models (LLMs)

▶ not reasoning on logic; memorise word semantics

▶ no correctness guarantees

▶ poor generalisation and scaling to larger problems

3 / 20

Prerequisites

AI Planning

▶ find a sequence of executable actions that achieve a goal

▶ requires long range reasoning over very large state space

▶ makes use of predicate logic

Graph Neural Networks (GNNs)

▶ message passing paradigm

▶ allow for arbitrary input graphs with fixed feature dimension

▶ we focus on Message Passing Neural Networks (MPNNs)

4 / 20

New Contributions

1. representation: domain-independent planning graphs

2. theory: what heuristics can we learn?

3. implementation: GOOSE planner

4. experiments: state-of-the-art domain-dependent and

-independent learning results

5 / 20

1. New domain-independent planning graphs

handemptyclearon =ontable

put-down

f b de

holding

pick-up stack unstack

c a

▶ graph representations of planning tasks → input into GNN

6 / 20

STRIPS Learning Graph (SLG)

STRIPS planning task: ⟨P, A, s0, G⟩

▶ nodes: propositions + actions

▶ features: node type + presence of proposition in s0 or G

▶ edges: pre - add - del

▶ learning version of STRIPS PDG [Shleyfman et al., AAAI-15]

7 / 20

Finite domain representation Learning Graph (FLG)

FDR planning task: ⟨V, A, s0, G⟩

▶ nodes: variables + domain values + actions

▶ features: node type + value in s0 and G

▶ edges: values, pre - effect

▶ learning version of FDR PDG [Pochter et al., AAAI-11]

8 / 20

Lifted Learning Graph (LLG)
lifted planning task: ⟨P, O, A, s0, G⟩

handemptyclearon =ontable

put-down

f b de

holding

pick-up stack unstack

c a

▶ graphs encode action schemata instead of actions

▶ only propositions are those in s0 and G

▶ node features and edges encode position of objects in the

predicate arguments
9 / 20

2. Theoretical results: what heuristics can they learn?

hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 2: Expressiveness hierarchy of
MPNNs on graph representations with re-
spect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines rep-
resent new graphs.

We begin with a lower bound on what MPNNs can
learn by showing that they can theoretically learn to
imitate algorithms for computing hmax and hadd on
our grounded graphs with the use of the approximation
theorem for neural networks Cybenko [1989], Hornik
et al. [1989].
Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG},
ε > 0 and h ∈ {hadd, hmax}. Then there exists a set
of parameters Θ for an MPNN FΘ such that for all
planning tasks Π, if naive dynamic programming for
computing h converges within L iterations for Π, and
h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more expressive than STRIPS-HGN. The idea of the
theorem is that STRIPS-HGN discards delete effects which prohibits it from learning h∗. Furthermore,
it is possible to imitate STRIPS-HGN with minor assumptions on MPNN architectures acting on
either of our grounded graphs.
Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let G ∈
{SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there exists parameters
Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems Π1 and
Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot learn hadd or hmax on the lifted LLG graph.
This is due to the graph being too condensed in the lifted version so that MPNNs cannot extract
certain information for computing these heuristics. The proof idea is to find a pair of planning tasks
which appear symmetric to MPNNs in the LLG representation but have different hmax and hadd

values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈

{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗ on any of our graphs. This result is not
unexpected given that the expressiveness of MPNNs is bounded by the graph isomorphism class
GI whose hardness is known to be in the low hierarchy of NP, unlike h+ which is NP-complete.
Similarly to the previous theorem, the proof follows the technique of finding a pair of planning tasks
with different h+ values that are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of h+ or h∗ on all planning problems.
Unfortunately, it is not possible to learn either absolute or relative approximations. We formalise this
in the following theorem, where the proof consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of h+ or h∗). Let h ∈ {h+, h∗}, G ∈
{SLG,FLG,LLG} and c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2)
such that for any set of parameters Θ for an MPNN we do not have

∧
i=1,2 |FΘ(G(Πi))− h(Πi)| ≤ c.

Also, for any set of parameters we do not have
∧

i=1,2 |1−FΘ(G(Πi))/h(Πi)| ≤ c.

One may also ask about the expressiveness of learning a policy. A policy can be learned in one of
several ways. A policy can be induced from a learned heuristic where given a state s we take the
action a whose successor s′ has the lowest heuristic value over all successors from s. To learn a
policy directly on grounded graphs, we can take inspiration from ASNets Toyer et al. [2020] and
predict confidence values in the range from 0 to 1 on grounded action nodes. To learn a policy directly
on lifted graphs, one may take inspiration from the architecture by Karia and Srivastava [2021] which
predicts the schema and the corresponding arguments of an action.

6

▶ expressivity analysis of GNNs operating on planning graphs

▶ domain-independent heuristics we can(not) learn

▶ proof techniques applicable to other learning for planning

architectures e.g. (LLM, RL)

10 / 20

2a. Positive results

Theorem
MPNNs operating on grounded graphs (SLG and FLG) are more
expressive than STRIPS-HGN [Shen et al., ICAPS-20]

▶ Proof idea: STRIPS-HGN do not encode delete effects

Theorem
MPNNs operating on grounded graphs can learn hadd and hmax

▶ Proof idea: encode Value Iteration into MPNNs +
approximation theorem

▶ practicality? not much

11 / 20

2b. Negative results

Theorem
MPNNs operating on lifted graphs (LLG) cannot learn hadd, hmax,
h+ and h∗

▶ Proof idea: counterexample
▶ a pair of planning tasks with different heuristic values but

appear the same to MPNNs operating on their LLG
representation

▶ thus, “scaling” your NN architecture is pointless

Theorem
MPNNs operating on grounded graphs cannot learn h+ and h∗ nor
any approximation

▶ Proof idea: class of counterexamples

12 / 20

Not all hope is lost

▶ possible to learn h∗ for subclasses of planning tasks [1]

▶ do not need perfect predictions

▶ can still perform well on GBFS with inaccurate heuristics

[1] St̊ahlberg, S., Bonet, B., Geffner, H. (2022). Learning General Optimal Policies
with Graph Neural Networks: Expressive Power, Transparency, and Limits. In ICAPS.

13 / 20

3. GOOSE architecture

1. states converted to graphs
▶ one of SLG, FLG, LLG

2. graphs fed into a GNN with learned parameters
▶ RGCN [Schlichtkrull et al., ESWC-18] for edge-labelled graphs

3. GPU batch evaluate only1 successor states
▶ backend search in Fast Downward implementation of GBFS

Code at https://github.com/DillonZChen/goose

1Doing more is suboptimal and is made worse with lazy evaluation GBFS.
14 / 20

https://github.com/DillonZChen/goose

4. Experiments: Learning paradigms
Domain-Independent Learning [Shen et al., ICAPS-20]
▶ do not train on evaluation domain
▶ learn to solve arbitrary planning problems; “zero shot learning”

train test

Domain-Dependent Learning
▶ train on very small tasks from the evaluation domain
▶ learn to solve specific planning problems

train test

15 / 20

Baselines

▶ blind: breadth first search

▶ hFF: GBFS with the hFF heuristic

▶ HGN: STRIPS-HGN trained in domain-dependent fashion

16 / 20

4a. Domain-Independent Learning

▶ train on tasks not from evaluation domain

▶ training: {IPC benchmarks} \ {evaluation domains}

▶ testing: number of objects2 from 15-100

baselines GOOSE

blind hFF HGN SLG FLG LLG

blocks (90) - 19 - 9 8 6
ferry (90) - 90 - 28 22 2
gripper (18) 1 18 5 5 3 9
n-puzzle (50) - 36 - 6 3 -
sokoban (90) 74 90 10 45 40 15
spanner (90) - - - - - -
visitall (90) - 6 25 16 41 -
visitsome (90) 3 26 33 73 65 15

Figure 6: Coverage of planners and GOOSE over various
domains. Cell intensities indicate the top 3 planners per row.

domain-dep. domain-ind.

aggr. L SLG FLG LLG SLG FLG LLG

mean

4 0.40 0.43 0.94 0.19 0.15 0.18
8 0.53 0.40 1.00 0.38 0.32 0.33
12 0.44 0.37 0.85 0.37 0.32 0.21
16 0.31 0.18 0.75 0.36 0.32 0.12

max

4 0.46 0.50 0.89 0.33 0.29 0.30
8 0.41 0.43 0.88 0.36 0.30 0.52
12 0.36 0.43 0.80 0.12 0.24 0.39
16 0.41 0.36 0.53 0.06 0.24 0.20

Figure 7: Total coverage normalised per domain of GOOSE
over various parameters and training paradigms, and nor-
malised again by the coverage of the best performing con-
figuration. Higher scores are better and the maximum score
is 1. The best scores per column are highlighted in bold.

How useful are learned domain-independent heuristics
for search? We again refer to Fig. 6 for the cover-
age of GOOSE trained with domain-independent heuris-
tics. With the exception of Sokoban, domain-independent
GOOSE outperforms blind search which suggests that the
learned domain-independent heuristics have some informa-
tiveness. This is supported by Fig. 5(a) which shows that
in most domains domain-independent heuristics provide a
mostly-linear approximation of h∗. Most notably, domain-
independent grounded graphs still outperform hFF on Visi-
tAll and VisitSome, and domain-independent LLG is able to
solve some Spanner problems.

The best performing domain-independent GOOSE graph
with 8 message passing layers and mean aggregator is the
grounded graph SLG. It provides enough information to
learn domain-independent heuristics with MPNNs in com-
parison to LLG, but also does not provide too much in-
formation to prevent overfitting in comparison to FLG
which computes additional structure. Domain-independent
GOOSE with SLG returns better quality plans, and expands
fewer nodes than hFF on VisitAll, VisitSome, and more than
half the Blocksworld instances which both planners were
able to solve. Domain-independent GOOSE also outper-
forms or ties with domain-dependent STRIPS-HGN across
all domains except VisitAll. However, domain-independent
GOOSE generally expands more nodes and returns lower
quality plans than their domain-dependent trained variants
with the same graph.

How important is finding the right graph neural net-
work parameters? We report the normalised coverage of

GOOSE with hyperparameters L ∈ {4, 8, 12, 16} layers and
⊕ ∈ {max,mean} aggregator in Fig. 7. We omitted results
with the sum aggregator as it yielded unstable training and
poor predictions. Increasing the number of layers theoreti-
cally improves informativeness and accuracy of predictions
but requires longer evaluation time and is more difficult to
train. There is no single set of parameters that performs well
over all graphs and training settings. Generally 4 or 8 lay-
ers result in similar coverages for domain-dependent train-
ing, and 8 or 12 layers for domain-independent training,
while increasing the number of layers beyond this results
in worse performance due to the aforementioned reasons.
We note that the effectiveness of max and mean aggrega-
tions vary with the graph representation and domain as both
aggregators lose information in different ways. However, in
the domain-dependent setting, LLG with the mean aggrega-
tor generally outperforms the max aggregator given that the
model can recover the information lost during normalisation
through the grouping of edge labels and node types.

How long do GOOSE evaluations take? GOOSE on a
single core CPU takes 0.2-0.9s to perform a full GNN eval-
uation on grounded graphs, and 0.2-0.3s on lifted graphs.
With optimal GPU usage, grounded graphs take 0.1-5ms per
state evaluation and lifted graphs take 0.07-0.7ms. Optimal
usage is achieved when the batch size is greater than 32 for
lifted graphs and 4 for grounded graphs. In our experiments,
the grounded graphs were able to optimally use the GPU
while the lifted graphs were not, resulting in a higher aver-
age state evaluation time. We note that evaluating states of
successor nodes further in the queue to increase the batch
size is also not optimal as the expanded states may never be
evaluated in sequential GBFS. Evaluation of heuristics on
GPUs is almost always faster than on CPU due to the paral-
lel execution of GNN matrix and scatter operations.

6 Conclusion
We have constructed various novel graph representations
of planning problems for the task of learning domain-
independent heuristics. In particular we provide the first
domain-independent graph representation of lifted planning.
All our new models are also complemented by a theo-
retical analysis of their expressive power in relation to
domain-independent heuristics and the previous work on
learning domain-independent heuristics, STRIPS-HGN. We
also construct the GOOSE planner using heuristic search
with heuristics learned from our new graph representations.
GOOSE has also been optimised for runtime with the use of
GPU batch evaluation and is able to solve significantly larger
problems than those seen in the training set, vastly surpass-
ing STRIPS-HGN learned heuristics, and outperforming the
hFF heuristic on several domains. It remains for future work
to implement search algorithms used by stronger satisficing
planners in GOOSE, and to optimise GPU utilisation when
computing heuristics. Furthermore GOOSE can be extended
to predict deadends alongside a heuristic for further prun-
ing the search space. Lastly, we aim to improve the expres-
siveness of learned heuristics by leveraging stronger graph
representation learning techniques.

hyperparameters: 8 GNN layers, mean aggr.

2except n-puzzle and Sokoban
17 / 20

4b. Domain-Dependent Learning

▶ train on tasks from the same evaluation domain

▶ training: number of objects3 from 2-10

▶ testing: number of objects3 from 15-100

baselines GOOSE

blind hFF HGN SLG FLG LLG

blocks (90) - 19 - - 6 62
ferry (90) - 90 - 32 33 88
gripper (18) 1 18 5 9 6 18
n-puzzle (50) - 36 - 10 10 -
sokoban (90) 74 90 10 31 29 34
spanner (90) - - - - - 60
visitall (90) - 6 25 46 50 44
visitsome (90) 3 26 33 72 39 65

Figure 6: Coverage of planners and GOOSE over various
domains. Cell intensities indicate the top 3 planners per row.

domain-dep. domain-ind.

aggr. L SLG FLG LLG SLG FLG LLG

mean

4 0.40 0.43 0.94 0.19 0.15 0.18
8 0.53 0.40 1.00 0.38 0.32 0.33
12 0.44 0.37 0.85 0.37 0.32 0.21
16 0.31 0.18 0.75 0.36 0.32 0.12

max

4 0.46 0.50 0.89 0.33 0.29 0.30
8 0.41 0.43 0.88 0.36 0.30 0.52
12 0.36 0.43 0.80 0.12 0.24 0.39
16 0.41 0.36 0.53 0.06 0.24 0.20

Figure 7: Total coverage normalised per domain of GOOSE
over various parameters and training paradigms, and nor-
malised again by the coverage of the best performing con-
figuration. Higher scores are better and the maximum score
is 1. The best scores per column are highlighted in bold.

How useful are learned domain-independent heuristics
for search? We again refer to Fig. 6 for the cover-
age of GOOSE trained with domain-independent heuris-
tics. With the exception of Sokoban, domain-independent
GOOSE outperforms blind search which suggests that the
learned domain-independent heuristics have some informa-
tiveness. This is supported by Fig. 5(a) which shows that
in most domains domain-independent heuristics provide a
mostly-linear approximation of h∗. Most notably, domain-
independent grounded graphs still outperform hFF on Visi-
tAll and VisitSome, and domain-independent LLG is able to
solve some Spanner problems.

The best performing domain-independent GOOSE graph
with 8 message passing layers and mean aggregator is the
grounded graph SLG. It provides enough information to
learn domain-independent heuristics with MPNNs in com-
parison to LLG, but also does not provide too much in-
formation to prevent overfitting in comparison to FLG
which computes additional structure. Domain-independent
GOOSE with SLG returns better quality plans, and expands
fewer nodes than hFF on VisitAll, VisitSome, and more than
half the Blocksworld instances which both planners were
able to solve. Domain-independent GOOSE also outper-
forms or ties with domain-dependent STRIPS-HGN across
all domains except VisitAll. However, domain-independent
GOOSE generally expands more nodes and returns lower
quality plans than their domain-dependent trained variants
with the same graph.

How important is finding the right graph neural net-
work parameters? We report the normalised coverage of
GOOSE with hyperparameters L ∈ {4, 8, 12, 16} layers and
⊕ ∈ {max,mean} aggregator in Fig. 7. We omitted results
with the sum aggregator as it yielded unstable training and
poor predictions. Increasing the number of layers theoreti-
cally improves informativeness and accuracy of predictions
but requires longer evaluation time and is more difficult to
train. There is no single set of parameters that performs well
over all graphs and training settings. Generally 4 or 8 lay-
ers result in similar coverages for domain-dependent train-
ing, and 8 or 12 layers for domain-independent training,
while increasing the number of layers beyond this results
in worse performance due to the aforementioned reasons.
We note that the effectiveness of max and mean aggrega-
tions vary with the graph representation and domain as both
aggregators lose information in different ways. However, in
the domain-dependent setting, LLG with the mean aggrega-
tor generally outperforms the max aggregator given that the
model can recover the information lost during normalisation
through the grouping of edge labels and node types.

How long do GOOSE evaluations take? GOOSE on a
single core CPU takes 0.2-0.9s to perform a full GNN eval-
uation on grounded graphs, and 0.2-0.3s on lifted graphs.
With optimal GPU usage, grounded graphs take 0.1-5ms per
state evaluation and lifted graphs take 0.07-0.7ms. Optimal
usage is achieved when the batch size is greater than 32 for
lifted graphs and 4 for grounded graphs. In our experiments,
the grounded graphs were able to optimally use the GPU
while the lifted graphs were not, resulting in a higher aver-
age state evaluation time. We note that evaluating states of
successor nodes further in the queue to increase the batch
size is also not optimal as the expanded states may never be
evaluated in sequential GBFS. Evaluation of heuristics on
GPUs is almost always faster than on CPU due to the paral-
lel execution of GNN matrix and scatter operations.

6 Conclusion
We have constructed various novel graph representations
of planning problems for the task of learning domain-
independent heuristics. In particular we provide the first
domain-independent graph representation of lifted planning.
All our new models are also complemented by a theo-
retical analysis of their expressive power in relation to
domain-independent heuristics and the previous work on
learning domain-independent heuristics, STRIPS-HGN. We
also construct the GOOSE planner using heuristic search
with heuristics learned from our new graph representations.
GOOSE has also been optimised for runtime with the use of
GPU batch evaluation and is able to solve significantly larger
problems than those seen in the training set, vastly surpass-
ing STRIPS-HGN learned heuristics, and outperforming the
hFF heuristic on several domains. It remains for future work
to implement search algorithms used by stronger satisficing
planners in GOOSE, and to optimise GPU utilisation when
computing heuristics. Furthermore GOOSE can be extended
to predict deadends alongside a heuristic for further prun-
ing the search space. Lastly, we aim to improve the expres-

hyperparameters: 8 GNN layers, mean aggr.

3except n-puzzle and Sokoban
18 / 20

4c. IPC 2023 Learning Track results
▶ domain-dependent learning
▶ planners:

▶ hFF: classical planner
▶ GOOSE: deep learning
▶ WL-GOOSE [2]: classical ML

classical GNN WL

Domain L
A

M
A

-F

h
FF

M
un

in
n

G
O

O
SE

m
ax

G
O

O
SE

m
ea

n

SV
R

SV
R
∞

2-
LW

L

G
PR

blocksworld 61 28 40 63.0 60.6 72 20 22 77
childsnack 35 26 11 23.2 15.6 16 15 13 30
ferry 68 68 46 70.0 70.0 77 32 60 76
floortile 11 12 0 0.0 1.0 2 0 1 2
miconic 90 90 30 88.6 86.8 90 31 67 90
rovers 67 34 15 25.6 28.8 33 27 33 37
satellite 89 65 18 31.0 27.4 46 29 20 57
sokoban 40 36 26 33.0 33.4 38 30 31 38
spanner 30 30 32 46.4 36.6 74 30 52 74
transport 66 41 17 32.4 38.0 29 26 35 32

sum coverage 557 430 235 413.2 398.2 477 240 334 513
sum IPC score 492.7 393.5 232.4 391.0 372.8 442.8 213.4 304.8 471.2

Table 1: Coverage of considered planners. The bottom-most
row provides their overall IPC 2023 learning track score.
Our new models are the WL models. Only LAMA-first is
a multi-queue heuristic search planner. The top three single-
queue heuristic search planners in each row are indicated by
the cell colouring intensity, with the best one in bold. The
best planner overall in each row is underlined.

Domain h
FF

G
O

O
SE

W
L

-G
O

O
SE

blocksworld 28 63.0 77
childsnack 26 23.2 30
ferry 68 70.0 76
floortile 12 0.0 2
miconic 90 88.6 90
rovers 34 25.6 37
satellite 65 31.0 57
sokoban 36 33.0 38
spanner 30 46.4 74
transport 41 32.4 32

sum coverage 430 413.2 513
sum IPC score 393.5 391.0 471.2

lite, Spanner). For Spanner, this is because LAMA’s heuris-
tics are not informative for this domain, which leads to it per-
forming like blind search and hence returning better plans.

SVR and GPR also outperform or tie with hFF on 5 and
7 domains, respectively. We compare GPR and hFF in more
detail in Fig. 6 by showing plan cost and nodes expanded per
problem. We observe that the better performing planner on a
domain generally has better plan quality and fewer number
of expanded nodes. The only exception to this is Sokoban
where GPR expands more nodes than hFF but solves more
problems because it is faster with its heuristic evaluations.
Overall, the domains in which GPR performs worse are do-
mains that require traversing a map which WL features can-
not express due to the finite number of WL iterations.

Are our methods more computationally efficient to
train? To answer this question, we compare the train-
ing time of GNNs using ILGs, SVR and GPR. Their mean
and 95% confidence interval in seconds are 112.8 ± 54.3
(GOOSEmax), 142.7± 62.6 (GOOSEmean), 0.8± 0.5 (SVR)
and 2.6 ± 1.7 (GPR). Comparing against the most efficient

100 101 102 103 104

GPR
100

101

102

103

104

hFF

cost

100 102 104 106 108

GPR
100

102

104

106

108

hFF

expanded

100 102 104 106 108

BLR+MIP

100

102

104

106

108

BL
R

expanded
blocksworld
childsnack
ferry
floortile
miconic
rovers
satellite
sokoban
spanner
transport

Figure 6: Returned plan cost and number of expanded nodes
of hFF and GPR. Problems that were not solved by one plan-
ner has their respective metric set to the axis limit. Points on
the top left triangle favour GPR while points on the bottom
right triangle favour hFF.

GNN model per domain, we have that SVR is between 33x
(Sokoban) to 421x (Rovers) more efficient and GPR is be-
tween 13x (Blocksworld) and 118x (Spanner) more efficient.
Note that the GNNs have access to GPUs and they would
take even more time to train on a CPU.

Does kernelising help? As commonly done in classical
machine learning, we combine our WL features with non-
linear kernels to obtain new non-linear features that can
increase the expressivity of the regression models. Unfor-
tunately, as shown in Tab. 1, this generally results in a
decrease in the performance of the learned heuristic: the
SVR∞ model has significantly worse coverage than SVR
despite theoretically having more expressive implicit fea-
tures. The drop in performance can be explained by over-
fitting to the more expressive features which do not bring
any obvious semantic information for planning tasks.

Do higher order WL features help? The motivation for
using higher-order WL features is similar to using higher-
order kernels: to introduce more expressive features that
may be correlated with the optimal heuristic. In Tab. 1, we
see that the performance of 2-LWL is generally worse on all
domains except for Transport. This again can be attributed to
poorer generalisation. Furthermore, computing the 2-LWL
features are slower to generate than WL features as they take
time cubic in the size of the ILGs in the worst case. We also
note that attempting to generate 3-LWL features causes out
of memory problems during training as the size of features
generated is extremely large, on the order of 107 and above.

Are Bayesian variance estimates meaningful? One ad-
vantage of Bayesian models is that by assuming a prior dis-
tribution on the weights of our models, we are able to de-
rive uncertainty bounds on the outputs of the learned pos-
terior model. In Tab. 2, we analyse the Pearson’s correla-
tion coefficient between the standard deviation obtained by
GPR and (1) the error between output mean and h∗, and
(2) the number of expanded nodes using the learned heuris-
tic with greedy best first search. We see that there is a sta-
tistically significant strong correlation between the heuristic
estimate error and the GPR variance outputs. This is reason-
able given that the derivation of the Bayesian model com-
putes the uncertainty on its output prediction. The story is

[2] Chen, D. Z., Trevizan, F., Thiébaux, S. (2024). Return to Tradition: Learning
Reliable Heuristics with Classical Machine Learning. In ICAPS. 19 / 20

Learning Domain-Independent Heuristics for Grounded and Lifted Planning
Dillon Z. Chen, Sylvie Thiébaux, Felipe Trevizan

Theoretical and SOTA experimental results in learning heuristics for
domain-dependent and -independent planning

1. New graph representations of planning tasks for learning

2. Theoretical Results 3. GOOSE 4. State-of-the-art Results

hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 2: Expressiveness hierarchy of
MPNNs on graph representations with re-
spect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines rep-
resent new graphs.

We begin with a lower bound on what MPNNs can
learn by showing that they can theoretically learn to
imitate algorithms for computing hmax and hadd on
our grounded graphs with the use of the approximation
theorem for neural networks Cybenko [1989], Hornik
et al. [1989].
Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG},
ε > 0 and h ∈ {hadd, hmax}. Then there exists a set
of parameters Θ for an MPNN FΘ such that for all
planning tasks Π, if naive dynamic programming for
computing h converges within L iterations for Π, and
h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more expressive than STRIPS-HGN. The idea of the
theorem is that STRIPS-HGN discards delete effects which prohibits it from learning h∗. Furthermore,
it is possible to imitate STRIPS-HGN with minor assumptions on MPNN architectures acting on
either of our grounded graphs.
Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let G ∈
{SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there exists parameters
Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems Π1 and
Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot learn hadd or hmax on the lifted LLG graph.
This is due to the graph being too condensed in the lifted version so that MPNNs cannot extract
certain information for computing these heuristics. The proof idea is to find a pair of planning tasks
which appear symmetric to MPNNs in the LLG representation but have different hmax and hadd

values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈

{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗ on any of our graphs. This result is not
unexpected given that the expressiveness of MPNNs is bounded by the graph isomorphism class
GI whose hardness is known to be in the low hierarchy of NP, unlike h+ which is NP-complete.
Similarly to the previous theorem, the proof follows the technique of finding a pair of planning tasks
with different h+ values that are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of h+ or h∗ on all planning problems.
Unfortunately, it is not possible to learn either absolute or relative approximations. We formalise this
in the following theorem, where the proof consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of h+ or h∗). Let h ∈ {h+, h∗}, G ∈
{SLG,FLG,LLG} and c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2)
such that for any set of parameters Θ for an MPNN we do not have

∧
i=1,2 |FΘ(G(Πi))− h(Πi)| ≤ c.

Also, for any set of parameters we do not have
∧

i=1,2 |1−FΘ(G(Πi))/h(Πi)| ≤ c.

One may also ask about the expressiveness of learning a policy. A policy can be learned in one of
several ways. A policy can be induced from a learned heuristic where given a state s we take the
action a whose successor s′ has the lowest heuristic value over all successors from s. To learn a
policy directly on grounded graphs, we can take inspiration from ASNets Toyer et al. [2020] and
predict confidence values in the range from 0 to 1 on grounded action nodes. To learn a policy directly
on lifted graphs, one may take inspiration from the architecture by Karia and Srivastava [2021] which
predicts the schema and the corresponding arguments of an action.

6

baselines domain-dep. domain-ind.

blind hFF HGN SLG FLG LLG SLG FLG LLG

blocks (90) - 19 - - 6 62 9 8 6
ferry (90) - 90 - 32 33 88 28 22 2
gripper (18) 1 18 5 9 6 18 5 3 9
n-puzzle (50) - 36 - 10 10 - 6 3 -
sokoban (90) 74 90 10 31 29 34 45 40 15
spanner (90) - - - - - 60 - - -
visitall (90) - 6 25 46 50 44 16 41 -
visitsome (90) 3 26 33 72 39 65 73 65 15

Figure 6: Coverage of planners and GOOSE over various
domains. Cell intensities indicate the top 3 planners per row.

domain-dep. domain-ind.

aggr. L SLG FLG LLG SLG FLG LLG

mean

4 0.40 0.43 0.94 0.19 0.15 0.18
8 0.53 0.40 1.00 0.38 0.32 0.33
12 0.44 0.37 0.85 0.37 0.32 0.21
16 0.31 0.18 0.75 0.36 0.32 0.12

max

4 0.46 0.50 0.89 0.33 0.29 0.30
8 0.41 0.43 0.88 0.36 0.30 0.52
12 0.36 0.43 0.80 0.12 0.24 0.39
16 0.41 0.36 0.53 0.06 0.24 0.20

Figure 7: Total coverage normalised per domain of GOOSE
over various parameters and training paradigms, and nor-
malised again by the coverage of the best performing con-
figuration. Higher scores are better and the maximum score
is 1. The best scores per column are highlighted in bold.

How useful are learned domain-independent heuristics
for search? We again refer to Fig. 6 for the cover-
age of GOOSE trained with domain-independent heuris-
tics. With the exception of Sokoban, domain-independent
GOOSE outperforms blind search which suggests that the
learned domain-independent heuristics have some informa-
tiveness. This is supported by Fig. 5(a) which shows that
in most domains domain-independent heuristics provide a
mostly-linear approximation of h∗. Most notably, domain-
independent grounded graphs still outperform hFF on Visi-
tAll and VisitSome, and domain-independent LLG is able to
solve some Spanner problems.

The best performing domain-independent GOOSE graph
with 8 message passing layers and mean aggregator is the
grounded graph SLG. It provides enough information to
learn domain-independent heuristics with MPNNs in com-
parison to LLG, but also does not provide too much in-
formation to prevent overfitting in comparison to FLG
which computes additional structure. Domain-independent
GOOSE with SLG returns better quality plans, and expands
fewer nodes than hFF on VisitAll, VisitSome, and more than
half the Blocksworld instances which both planners were
able to solve. Domain-independent GOOSE also outper-
forms or ties with domain-dependent STRIPS-HGN across
all domains except VisitAll. However, domain-independent
GOOSE generally expands more nodes and returns lower
quality plans than their domain-dependent trained variants
with the same graph.

How important is finding the right graph neural net-
work parameters? We report the normalised coverage of
GOOSE with hyperparameters L ∈ {4, 8, 12, 16} layers and
⊕ ∈ {max,mean} aggregator in Fig. 7. We omitted results
with the sum aggregator as it yielded unstable training and
poor predictions. Increasing the number of layers theoreti-
cally improves informativeness and accuracy of predictions
but requires longer evaluation time and is more difficult to
train. There is no single set of parameters that performs well
over all graphs and training settings. Generally 4 or 8 lay-
ers result in similar coverages for domain-dependent train-
ing, and 8 or 12 layers for domain-independent training,
while increasing the number of layers beyond this results
in worse performance due to the aforementioned reasons.
We note that the effectiveness of max and mean aggrega-
tions vary with the graph representation and domain as both
aggregators lose information in different ways. However, in
the domain-dependent setting, LLG with the mean aggrega-
tor generally outperforms the max aggregator given that the
model can recover the information lost during normalisation
through the grouping of edge labels and node types.

How long do GOOSE evaluations take? GOOSE on a
single core CPU takes 0.2-0.9s to perform a full GNN eval-
uation on grounded graphs, and 0.2-0.3s on lifted graphs.
With optimal GPU usage, grounded graphs take 0.1-5ms per
state evaluation and lifted graphs take 0.07-0.7ms. Optimal
usage is achieved when the batch size is greater than 32 for
lifted graphs and 4 for grounded graphs. In our experiments,
the grounded graphs were able to optimally use the GPU
while the lifted graphs were not, resulting in a higher aver-
age state evaluation time. We note that evaluating states of
successor nodes further in the queue to increase the batch
size is also not optimal as the expanded states may never be
evaluated in sequential GBFS. Evaluation of heuristics on
GPUs is almost always faster than on CPU due to the paral-
lel execution of GNN matrix and scatter operations.

6 Conclusion
We have constructed various novel graph representations
of planning problems for the task of learning domain-
independent heuristics. In particular we provide the first
domain-independent graph representation of lifted planning.
All our new models are also complemented by a theo-
retical analysis of their expressive power in relation to
domain-independent heuristics and the previous work on
learning domain-independent heuristics, STRIPS-HGN. We
also construct the GOOSE planner using heuristic search
with heuristics learned from our new graph representations.
GOOSE has also been optimised for runtime with the use of
GPU batch evaluation and is able to solve significantly larger
problems than those seen in the training set, vastly surpass-
ing STRIPS-HGN learned heuristics, and outperforming the
hFF heuristic on several domains. It remains for future work
to implement search algorithms used by stronger satisficing
planners in GOOSE, and to optimise GPU utilisation when
computing heuristics. Furthermore GOOSE can be extended
to predict deadends alongside a heuristic for further prun-
ing the search space. Lastly, we aim to improve the expres-

classical GNN WL

Domain L
A

M
A

-F

h
FF

M
un

in
n

G
O

O
SE

m
ax

G
O

O
SE

m
ea

n

SV
R

SV
R
∞

2-
LW

L

G
PR

blocksworld 61 28 40 63.0 60.6 72 20 22 77
childsnack 35 26 11 23.2 15.6 16 15 13 30
ferry 68 68 46 70.0 70.0 77 32 60 76
floortile 11 12 0 0.0 1.0 2 0 1 2
miconic 90 90 30 88.6 86.8 90 31 67 90
rovers 67 34 15 25.6 28.8 33 27 33 37
satellite 89 65 18 31.0 27.4 46 29 20 57
sokoban 40 36 26 33.0 33.4 38 30 31 38
spanner 30 30 32 46.4 36.6 74 30 52 74
transport 66 41 17 32.4 38.0 29 26 35 32

sum coverage 557 430 235 413.2 398.2 477 240 334 513
sum IPC score 492.7 393.5 232.4 391.0 372.8 442.8 213.4 304.8 471.2

Table 1: Coverage of considered planners. The bottom-most
row provides their overall IPC 2023 learning track score.
Our new models are the WL models. Only LAMA-first is
a multi-queue heuristic search planner. The top three single-
queue heuristic search planners in each row are indicated by
the cell colouring intensity, with the best one in bold. The
best planner overall in each row is underlined.

Domain h
FF

G
O

O
SE

W
L

-G
O

O
SE

blocksworld 28 63.0 77
childsnack 26 23.2 30
ferry 68 70.0 76
floortile 12 0.0 2
miconic 90 88.6 90
rovers 34 25.6 37
satellite 65 31.0 57
sokoban 36 33.0 38
spanner 30 46.4 74
transport 41 32.4 32

sum coverage 430 413.2 513
sum IPC score 393.5 391.0 471.2

lite, Spanner). For Spanner, this is because LAMA’s heuris-
tics are not informative for this domain, which leads to it per-
forming like blind search and hence returning better plans.

SVR and GPR also outperform or tie with hFF on 5 and
7 domains, respectively. We compare GPR and hFF in more
detail in Fig. 6 by showing plan cost and nodes expanded per
problem. We observe that the better performing planner on a
domain generally has better plan quality and fewer number
of expanded nodes. The only exception to this is Sokoban
where GPR expands more nodes than hFF but solves more
problems because it is faster with its heuristic evaluations.
Overall, the domains in which GPR performs worse are do-
mains that require traversing a map which WL features can-
not express due to the finite number of WL iterations.

Are our methods more computationally efficient to
train? To answer this question, we compare the train-
ing time of GNNs using ILGs, SVR and GPR. Their mean
and 95% confidence interval in seconds are 112.8 ± 54.3
(GOOSEmax), 142.7± 62.6 (GOOSEmean), 0.8± 0.5 (SVR)
and 2.6 ± 1.7 (GPR). Comparing against the most efficient

100 101 102 103 104

GPR
100

101

102

103

104

hFF

cost

100 102 104 106 108

GPR
100

102

104

106

108

hFF

expanded

100 102 104 106 108

BLR+MIP

100

102

104

106

108

BL
R

expanded
blocksworld
childsnack
ferry
floortile
miconic
rovers
satellite
sokoban
spanner
transport

Figure 6: Returned plan cost and number of expanded nodes
of hFF and GPR. Problems that were not solved by one plan-
ner has their respective metric set to the axis limit. Points on
the top left triangle favour GPR while points on the bottom
right triangle favour hFF.

GNN model per domain, we have that SVR is between 33x
(Sokoban) to 421x (Rovers) more efficient and GPR is be-
tween 13x (Blocksworld) and 118x (Spanner) more efficient.
Note that the GNNs have access to GPUs and they would
take even more time to train on a CPU.

Does kernelising help? As commonly done in classical
machine learning, we combine our WL features with non-
linear kernels to obtain new non-linear features that can
increase the expressivity of the regression models. Unfor-
tunately, as shown in Tab. 1, this generally results in a
decrease in the performance of the learned heuristic: the
SVR∞ model has significantly worse coverage than SVR
despite theoretically having more expressive implicit fea-
tures. The drop in performance can be explained by over-
fitting to the more expressive features which do not bring
any obvious semantic information for planning tasks.

Do higher order WL features help? The motivation for
using higher-order WL features is similar to using higher-
order kernels: to introduce more expressive features that
may be correlated with the optimal heuristic. In Tab. 1, we
see that the performance of 2-LWL is generally worse on all
domains except for Transport. This again can be attributed to
poorer generalisation. Furthermore, computing the 2-LWL
features are slower to generate than WL features as they take
time cubic in the size of the ILGs in the worst case. We also
note that attempting to generate 3-LWL features causes out
of memory problems during training as the size of features
generated is extremely large, on the order of 107 and above.

Are Bayesian variance estimates meaningful? One ad-
vantage of Bayesian models is that by assuming a prior dis-
tribution on the weights of our models, we are able to de-
rive uncertainty bounds on the outputs of the learned pos-
terior model. In Tab. 2, we analyse the Pearson’s correla-
tion coefficient between the standard deviation obtained by
GPR and (1) the error between output mean and h∗, and
(2) the number of expanded nodes using the learned heuris-
tic with greedy best first search. We see that there is a sta-
tistically significant strong correlation between the heuristic
estimate error and the GPR variance outputs. This is reason-
able given that the derivation of the Bayesian model com-
putes the uncertainty on its output prediction. The story is

Poster 639 Code at https://github.com/DillonZChen/goose

Thanks! Questions? 20 / 20

https://github.com/DillonZChen/goose

