Graph Learning for Numeric Planning

Dillon Z. Chen

Sylvie Thiébaux

NeurIPS 2024 Vancouver, Canada

What is Numeric Planning?

- goal-conditioned sequential decision making
- factored representations of states
 - predicates for Boolean values
 - functions for numeric values
- e.g. Capacity Constrained Blocksworld

Planning and RL: What's the Difference?

Both solve MDPs!

Planning	Reinforcement Learning
model-known	model-free or model-based
goal-conditioned, minimise cost	maximise reward
transitions modelled symbolically	transitions modelled as distributions
search algorithms: A*, GBFS, iLAO*, LRTDP	search algorithms: MTCS, UCT, TD(λ)
heuristic functions (cost-to-go estimator)	value functions (expected reward)
algorithms guided by models	algorithms guided by rewards

Learning for Planning

generalise across object sizes
→ out-of-distribution learning

 supervised learning from quick to generate training labels

• graph learning for relational data and arbitrarily sized inputs

 learn heuristic functions for heuristic search

Learning Pipeline

(a) numeric planning tasks transformed into graphs

(b/c) graphs input into parameterised graph learning models

(d) models learn a heuristic function as either cost-to-go estimators or ranking functions

New Contributions

• graph representation for numeric planning

• graph kernel for categorical-continuous attributes

LP ranking formulation for learning heuristic functions

initial state

goal condition

i j k

A B C

F D E C

Experiments

• train on labelled data from small training tasks

• evaluate with learned heuristic functions on large tasks

- competitive against numeric planners
 - purple = numeric planner
 - orange = learning planner

