

Numeric Planning

- factored representations of states
- **predicates** for Boolean values: on(A, i), (F, D), on(D, B), on(B, j), on(E, C), on(C, k)
- **functions** for numeric values capacity(i) = 2, capacity(j) = 0, capacity(k) = 1
- transition system and goals specified
- by Boolean assignments on(A, B), on(B, i)
- numeric conditions
- capacity(i) >= 1
- solution:
 - goal-reaching sequence of actions

Planning and RL: What's the Difference? Both Solve MDPs!

Planning	Reinforcement Learning
model-known	model-free or model-based
goal-conditioned, minimise cost	maximise reward
transitions modelled symbolically	transitions modelled as distribution
search algorithms: A*, GBFS, iLAO*, LRTDP	search algorithms: MTCS, UCT, T
heuristic functions (cost-to-go estimator)	value functions (expected reward)
algorithms guided by models	algorithms guided by rewards

Graph Learning

- in the top 3 keywords of the past 3 ICLR conferences
- handles relational data and arbitrarily sized inputs = planning
- deep learning
 - Graph Neural Networks (GNNs)
- classical ML
 - graph kernels

Graph Learning for Numeric Planning

Dillon Z. Chen^{1,2} Sylvie Thiébaux^{1,2} 'LAAS-CNRS, Université de Toulouse, ²The Australian National University {dillon.chen, sylvie.thiebaux}@laas.fr

> (a) numeric planning tasks are transformed into graphs with edge labels, and both categorical and continuous node features

⁻D(λ)

Learning Heuristic Functions

(b) graphs are fed into graph kernels (top) or transformed into matrix representations (bottom) (c) graph kernel features use a linear kernel; matrix representations are fed into GNNs (d) models learn a heuristic function as either cost-to-go estimators or ranking functions used for search

