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The Story Thus Far: 3 Key Insights

(1) Your Graph Learning Model Does Not Matter (2) Deep Learning is Most Overrated for Planning (3) Learn Rankings Instead of Hard Targets
eHow to compare different architectures? e|ldea: Graph Kernels (GKs) at least as expressive as eSupervised learning requires labels

earchitecture = representation + learning model Graph Neural Networks (GNNS) (¢ en ang Trevizan and Thigbaux, ICAPS-24] eUsually learn from optimal heuristics or policies
eRepresentation determines expressivity echeaper to train and evaluate = faster search Instead, learn to compare states

eRelax the optimisation criterion
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e Get additional data from plan traces for free
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In light of this, we

e Unify and taxonomise graph representations

e [ heoretically compare representation power

GNN vs GK train time (s)  GNN vs GK parameters  Cumulative cov./time eReduce overfitting to targets vs. opt. heuristic learners
Note the LOG scale GNNs also have access to GPUs
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Open Challenges: 5 Problems From ML
(1) Expressivity (2) Generalisation (3) Optimisation (4) Collecting Data (5) Fair Comparisons
Expressivity determines what There is minimal generalisation theory Choice of optimisation depends When do we know we have collected Model performance is not robust to

domains your model can solve. with learning to plan. heavily on the domain. enough data? training data and parameters



