

Generalised Planning

- •Focus on generalisation across number of objects
- •Train on small problems
- Test on large problems

(1) Your Graph Learning Model Does Not Matter

- How to compare different architectures?
- architecture = representation + learning model
- Representation determines expressivity
- In light of this, we
- Unify and taxonomise graph representations
- Theoretically compare representation power

(1) Expressivity

Expressivity determines what domains your model can solve.

(2) Generalisation

There is minimal generalisation theory with learning to plan.

Graph Learning for Planning: The Story Thus Far and Open Challenges

Dillon Z. Chen Mingyu Hao Sylvie Thiébaux Felipe Trevizan

The Story Thus Far: 3 Key Insights

Open Challenges: 5 Problems From ML

(3) Optimisation

Choice of optimisation depends heavily on the domain.

Graph Learning Architectures

convert task to graph

(2) Deep Learning is Most Overrated for Planning

Instead, learn to **compare** states

(4) Collecting Data

When do we know we have collected enough data?

y(j)	put in graph learning model	\mathbf{x}_2 \mathbf{x}_3 $\psi(\cdot)$ $\psi(\cdot)$
y(i)		$\psi(\cdot)$ $\psi(\cdot)$
1,b)		\mathbf{x}_1 \mathbf{x}_4

(3) Learn Rankings Instead of Hard Targets

- Supervised learning requires labels
- •Usually learn from optimal heuristics or policies

(5) Fair Comparisons

Model performance is not robust to training data and parameters