
Flexible FOND HTN Planning: A Complexity Analysis

Dillon Z. Chen, Pascal Bercher
School of Computing

The Australian National University
{dillon.chen,pascal.bercher}@anu.edu.au

Abstract

Hierarchical Task Network (HTN) planning is an expressive
planning formalism that has often been advocated to address
real-world problems. Yet few extensions exist that can deal
with the many challenges encountered in the real world, one
being the capability to express uncertainty. Recently, a new
HTN formalism for fully observable nondeterministic prob-
lems was proposed and studied theoretically. In this paper, we
lay out limitations of that formalism and propose an alterna-
tive definition, which addresses and resolves such limitations.
We also study its complexity for certain problems.

Introduction
Hierarchical task network (HTN) planning is a planning ap-
proach that focuses on problem decomposition. Compound
tasks describe abstract activities, and the domain model de-
scribes how they can be carried out by exploiting decompo-
sition methods, pre-defined recipes stating by which plans
such compounds tasks may be implemented.

The goal is to find a plan – a sequence of primitive tasks
that can be executed – which successfully implements the
given initial compound tasks defining the planning problem.
Because this task hierarchy may be exploited to encode ex-
pert knowledge and thus gives another means of modelling
a problem, and because it may be used to also exclude unde-
sired solutions, it has been used in many different practical
scenarios (Bercher, Alford, and Höller 2019).

In particular when facing real-world problems, we may
face challenges and limitations if we model deterministi-
cally. The world may be dynamically changing (Patra et al.
2020, 2021; Li, Patra, and Nau 2021), partially observable
(Richter and Biundo 2017), or require reasoning over ac-
tions with nondeterministic outcomes (Kuter and Nau 2004;
Kuter et al. 2005, 2009) – most of these works in the realm
of HTN planning and uncertainty focused on developing
planners that produce classical policies to (non-hierarchical)
fully observable nondeterministic (FOND) problems.

Recently, we proposed such an extension of FOND poli-
cies capable of capturing solutions to FOND HTN prob-
lems where solutions need to be refinements of an initial
task network (Chen and Bercher 2021), just like in standard
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deterministic HTN planning. For this FOND HTN formal-
isation, we studied the computational complexity of vari-
ous restrictions on the task hierarchy, as well as the impact
of two ways uncertainty is taken into account: during plan-
ning time (linearisation-dependent solutions), or during exe-
cution time (outcome-dependent solutions). The latter more
flexible solution definition states that a primitive partially or-
dered plan is regarded a solution when after the execution of
any nondeterministic action one is still able to continue ex-
ecuting the plan by picking an appropriate action depending
on previous action outcomes until all actions of the plan are
successfully executed. This definition assumes that one still
needs to compute one such policy before one starts execut-
ing it. Thus we will denote this formalism as FONDFM HTN,
indicating that they use “fixed methods” in their solutions.

In this paper we propose a more flexible FOND HTN
formalisation where policies are no longer defined based
on primitive plans, but allow a selection of decomposition
methods for compound tasks in the policy, which there-
fore allows this choice to depend on the outcome of exe-
cuted tasks. We thus denote the novel formalism FONDMP

HTN, indicating that it uses “method-based policies”. Later
(cf. Fig. 1) we show that the FONDMP HTN formalism is in-
deed more expressive as it allows to find solutions that can-
not be found with the FONDFM HTN formalism. On top of
the more flexible formalism we present a complexity study
for the plan existence problem alongside baseline search al-
gorithms for such problems.

Formalism
The definitions of the FONDMP HTN planning domain are
the same of that for FONDFM HTN planning by extend-
ing definitions for deterministic HTN planning (Geier and
Bercher 2011; Bercher, Alford, and Höller 2019) to include
nondeterministic actions.

Definition 1. A task network tn is a tuple 〈T,≺, α〉 where
T is a finite set of task id symbols or labels, ≺ ⊆ T × T is a
strict partial order on T , and α : T → N maps a task id to
some task name in the set of task names N .

We also have notation for special task networks: tn(a) =
〈{t}, ∅, {(t, a)}〉 and tn∅ = 〈∅, ∅, ∅〉. The notation |T ′ ap-
plied to a task network or any of its elements denotes re-
striction on the respective sets to only tasks in T ′. Also let



Hierarchy Order Weak Strong Strong cyclic

primitive total NP Prop. 2 P∗ Cor. 1
partial NP Prop. 2 PSPACE Cor. 1

acyclic total PSPACE Prop. 2 EXPTIME Thm. 1 EXPTIME Thm. 1
partial NEXPTIME Prop. 2 EXPSPACE Thm. 2 EXPSPACE Thm. 2

regular total PSPACE Prop. 2 EXPTIME Thm. 3 EXPTIME Thm. 3
partial PSPACE Prop. 2 EXPTIME Thm. 3 EXPTIME Thm. 3

tail-recursive total PSPACE Prop. 2 EXPTIME Thm. 4 EXPTIME Thm. 4
partial EXPSPACE Prop. 2 2-EXPTIME Thm. 5 2-EXPTIME∗ Thm. 5

Table 1: Complexity results for FONDMP HTN planning. The first column lists known special cases by restricting the hierarchy,
where the general case is undecidable. Classes marked ∗ are not complete where only membership is known.

tn \ t denote tn |T\{t} with T being the task ids of tn.
We define an equivalence between two task networks

which might have the same underlying structure but differ-
ent task id symbols. Specifically, we say that two task net-
works tn = 〈T,≺, α〉 and tn′ = 〈T ′,≺′, α′〉 are isomor-
phic if there exists a bijection σ : T → T ′ between task id
symbols where for all t1, t2 ∈ T , we have (t1, t2) ∈ ≺ iff
(σ(t1), σ(t2)) ∈ ≺′ and α(t) = α′(σ(t)) for all t ∈ T . This
definition of equivalence will be required for building well
defined FONDMP HTN problems and solutions.

Definition 2. A FONDMP HTN domain D is a tuple
〈F ,NP ,NC , δ,M〉 where F is a finite set of facts, NP is
a finite set of primitive task names,NC is a finite set of com-
pound task names, δ : NP → A is an action mapping, and
M is a finite set of decomposition methods, withNP∪NC =

N disjoint and A ⊆ 2F × 22
F×2F denoting the set of

nondeterministic primitive tasks. A primitive task or action
is defined by a single precondition, and a set of mutually-
exclusive alternative possible effects. More specifically, a =
(pre(a), eff(a)) with eff(a) = {(addi(a), deli(a)) | 1 ≤ i ≤
k} for k dependent on a and pre(a), addi(a), deli(a) ⊆ F .
For ease of notation whenever we have a deterministic ac-
tion (|eff(a)| = 1) we will use (pre(a), add(a), del(a)) as to
remove redundant brackets.

Define a set of states S = 2F corresponding to subsets
of F . Let τ : A × S → {>,⊥} denote executability of
an action at a state where τ(a, s) = > for pre(a) ⊆ s and
τ(a, s) = ⊥ otherwise. For ease of notation, we also define
the executability function τ for primitive task names and id
symbols in the obvious way by τ(n, s) = τ(δ(n), s) and
τ(t, s) = τ(α(t), s) = τ(δ(α(t)), s) for n ∈ NP and t ∈
T respectively. We also define an application function γ :
A × S → 2S where for a ∈ A, s ∈ S we have γ(a, s)
undefined if τ(a, s) = ⊥ and otherwise we have γ(a, s) =
{(s \ deli(a)) ∪ addi(a) | 1 ≤ i ≤ |eff(a)|}.

Now that we have the distinction of primitive and com-
pound task names (NP and NC , respectively), we can de-
fine two more concepts: Define γ on primitive task names
n ∈ NP and id symbols by γ(n, s) = γ(δ(n), s) and
γ(t, s) = γ(α(t), s) = γ(δ(α(t)), s). We can now say that
tn = 〈T,≺, α〉 is a primitive task network if all its tasks are
primitive, i.e., for all t ∈ T , we have α(t) ∈ NP .

Definition 3. A (decomposition) method is a tuple m =

(c, tnm) with c ∈ NC and tnm = 〈Tm,≺m, αm〉.
We can apply m to tn1 = 〈T1,≺1, α1〉 if there ex-
ists t ∈ T1 with α1(t) = c. We say m decomposes
t in tn1 to generate a task network tn2 = 〈T2,≺2, α2〉
with T2 := T ′1 ∪ T ′m, α2 := (α1 ∪ α′m)|T ′

1
and

≺2 := (≺1∪≺′m)|T ′
1
∪{(t1, t2) ∈ T ′1 × T ′m | (t1, t) ∈ ≺1}∪

{(t1, t2) ∈ T ′m × T ′1 | (t, t2) ∈ ≺1} , where T ′1 = T1 \ {t}
and tn′m is a task network isomorphic to tnm such that
T ′1 ∩ T ′m = ∅. We denote this application by tn1 →t

m tn2.

Definition 4. A FONDMP HTN problem P is a tuple
〈D, sI , tnI〉 with D a FONDMP HTN domain, sI ∈ 2F an
initial state and tnI an initial task network.

With a FONDMP HTN problem in hand, we now provide
explicit definitions for what a plan or solution means. Sim-
ilar to FONDFM HTN planning, we employ policies to de-
fine a solution. The difference between the two formalisms
lies in how decomposition plays into a solution. In FONDFM

HTN planning, solutions are defined by fixing a sequence of
decomposition methods to apply on the initial task network
and then constructing a policy for the acquired primitive task
network. In contrast, we will integrate methods into our pol-
icy, meaning that methods may be applied at different times
depending on nondeterministic task effects.

Although FONDMP HTN solutions are more flexible by
integrating decomposition into online execution, it has a few
drawbacks: policies can grow arbitrarily large and online ex-
ecution is hard. This arises from how we define a policy
to take as input a task network and state, where the set of
task networks is possibly unbounded in contrast to outcome-
dependent solutions of FONDFM HTN problems which de-
fine policies for primitive task networks only using a lookup
table of a current state and previously executed tasks. The
latter is always bounded by noticing that there are only a
finite number of states and subsets of tasks to account for.
Definition 5. Let D be a FONDMP HTN domain. A policy
π is a partial function π : TN × S → T ×M′ where TN
is the set of all possible task networks, T is the union of the
sets of (corresponding) tasks in the task networks of TN and
M′ = M ∪ {ε}, where ε is a symbol used for primitive
tasks. Specifically, 〈(tn, s), (t,m)〉 ∈ π for tn = 〈T,≺, α〉
only if t ∈ T , and if t is primitive, m = ε, and other-
wise if t is compound, m = (α(t), tn′) is a method of D.
For brevity’s sake, we will refer to task network state tuples



(tn, s) as subproblems, given that each (tn, s) can be viewed
as a standalone problem to be solved by itself.

We also impose the condition on a policy that for all pairs
〈(tn1, s1), (t1,m1)〉 , 〈(tn2, s2), (t2,m2)〉 ∈ π, if s1 = s2,
then tn1 and tn2 are not isomorphic. This condition is re-
quired to create a well defined notion of policy execution.

Execution of a policy for FOND STRIPS planning is de-
scribed as a reactive execution loop that executes actions
based on a survey of the state of the world, which shall also
be made explicit for FONDMP HTN planning for a given task
network tnI and state sI in Algorithm 1.

Algorithm 1: Policy Execution Procedure
1 (tn, s)← (tnI , sI);
2 while InstructionExists(π, tn, s) do
3 (t,m)← GetInstruction(π, tn, s);
4 if m = ε then
5 tn← Remove(tn, t);
6 Execute(t);
7 s← SenseCurrentState();
8 else tn← Decompose(tn, t,m) ;

The function InstructionExists(π, tn, s) returns
true if tn is not the empty task network and there exists a
task network tn′ that is isomorphic to tn such that π(tn′, s)
exists. GetInstruction(π, tn, s) returns π(tn′, s), as-
suming that InstructionExists(π, tn, s) is true.
Remove(tn, t) returns the task network tn without task t
and Decompose(tn, t,m) the task network we get whenm
decomposes t in tn. Lastly, SenseCurrentState() re-
turns the state of the world.

Having defined a mechanism to execute FOND task net-
works, we can now describe and formalise FONDMP HTN
solution criteria. We define weak, strong and strong cyclic
solutions as is canonical to non-hierarchical nondeterminis-
tic planning (Cimatti et al. 2003) and also in YoYo, a planner
which integrates HTN planning for solving such planning
problems (Kuter et al. 2005, 2009). To formalise these con-
cepts we will define the execution structure of a policy as a
graph and use this graph structure to define solutions.
Definition 6. LetP be a FONDMP HTN problem. Let the tu-
pleL = 〈U ,V〉where U ⊆ TN×S and V ⊆ (TN×S)×(T×
(M∪{ε}))×(TN×S) are minimal sets satisfying the condi-
tions (tnI , sI) ∈ U , and if (tn, s) ∈ U and π(tn, s) = (t,m)
then if t is primitive, for all s′ ∈ γ(t, s) we have (tn\t, s′) ∈
U and ((tn, s), (t,m), (tn\t, s′)) ∈ V , and if t is compound,
we have (tn′, s) ∈ U and ((tn, s), (t,m), (tn′, s)) ∈ V
where tn→t

m tn′.
The execution structure induced by a policy π is the

tuple [L] = 〈[U ] , [V]〉 where [U ] is the set U quotient
subproblems out by the relation (tn, s) ∼ (tn′, s) iff
tn and tn′ are isomorphic and similarly for [V] where
((tn1, s), (t,m), (tn2, s)) ∼ ((tn′1, s), (t,m), (tn′2, s)) iff
tn1 and tn2 are isomorphic and tn′1 and tn′2 are isomorphic.

For ease of notation, we will omit the equivalence rela-
tion notation (i.e. the square brackets) for an execution struc-
ture. We can also view an execution structure L as a directed

graph with nodes represented by elements in U and directed
edges by elements in V . Define (tnI , sI) to be an initial node
and any (tn, s) ∈ TN × S to be a terminal node if it has no
outgoing edges, and a goal node if tn = tn∅. We now pro-
ceed to define the three solution criteria.
Definition 7. Let P be a FONDMP HTN problem and tn
a task network. Let π be a policy with execution structure
L = 〈U ,V〉. We say that π is a weak solution if L is finite
and there exists a terminal node of L that is a goal node, a
strong cyclic solution if every terminal node of L is a goal
node, a strong (acyclic) solution if L is finite and acyclic and
every terminal node of L is a goal node.

Another way of interpreting the solution criteria is look-
ing at how Algorithm 1 terminates: weak solutions some-
times terminate and if they do, they might do so with an
empty task network (but could also fail), strong solutions
always terminate with an empty task network (hence the re-
quirement for acyclic L), and strong cyclic solutions even-
tually terminate (even when L is infinite).

Practically, strong solutions are the most reliable as they
guarantee the goal condition be met in finitely many steps.
This is followed by strong cyclic solutions which also guar-
antee that eventually we reach the goal condition. However,
execution can be arbitrarily long. Thus, strong solutions are
a special case of strong cyclic solutions which are in turn a
special case of weak solutions.

sIs1 s2
C →m1

b
C →m2

c a
a

cb

Figure 1: Transition system and domain for which only a
FONDMP HTN policy exists given tnI = 〈a,C〉.

Consider the following example (Fig. 1) that proves that
our novel FONDMP HTN policy definition that incorporates
methods is more expressive than the FONDFM HTN policy.
Assume a totally ordered initial task network tnI containing
a primitive task a followed by a compound task C. Depend-
ing on nondeterminism, a leads into s1 or s2, but only b is
executable in s1 and only c is executable in s2, so no fixed
choice of methods can non-weakly solve the problem. De-
laying method choice until a was performed does solve it.

Problem Classes
Given that standard HTN planning is undecidable (Erol,
Hendler, and Nau 1996; Geier and Bercher 2011), studies
have been made to find problem subclasses that can be de-
cided. We list the commonly studied subclasses here (Erol,
Hendler, and Nau 1996; Alford et al. 2012; Alford, Bercher,
and Aha 2015). We will define stratifications proposed by
Alford et al. (2012) to help define the latter two.
Definition 8. An HTN problemP is primitive if tnI is prim-
itive. Note that sets NC andM are now irrelevant.
Definition 9. An HTN problem P is regular if for its ini-
tial task network tnI = 〈T,≺, α〉 and for all its methods
(c, 〈T,≺, α〉) ∈ M it holds that there is at most one com-
pound task in T , and if t ∈ T is compound, it is the last task,
meaning that for all t′ ∈ T with t′ 6= t we have t′ ≺ t.



Definition 10. A stratification on a set S is a total order ≤
on S. An inclusion-maximal subset C ⊆ S is a stratum if
for all x, y ∈ C both x ≤ y and y ≤ x holds.

Definition 11. An HTN problem P is acyclic if no com-
pound task can reach itself via decomposition. More for-
mally, we can define a stratification on NC in P with c ≤ c′
if there exists a method (c, 〈T,≺, α〉) ∈ M and α(c′) ∈ T ,
and for all c, c′ ∈ NC , if c ≤ c′, then c′ 6≤ c.
Definition 12. An HTN problem P is tail-recursive if we
can define a stratification onNC of P where for all methods
(c, 〈T,≺, α〉) it holds that if there exists a last compound
task t ∈ T , then we have α(t) ≤ c, and for any non-last
compound task t ∈ T , we have α(t) ≤ c and c 6≤ α(t).

Note by definition that primitive, regular and acyclic prob-
lems are all special cases of tail-recursive problems. We also
use the same definitions to describe decomposition methods.
For example a regular method is a method whose task net-
work has at most one compound task which has to be last.

Search Algorithms
In this section, we describe two algorithms for determining
plan existence of a given FONDMP HTN problem. We do
so to provide baseline algorithms for applications and to aid
with membership proofs for upcoming complexity proofs.
Although not necessarily optimal, they are canonical exten-
sions of other baseline algorithms for HTN planning.

Alternating Progression Search
The first algorithm extends progression search which is con-
sidered the canonical search algorithm for solving HTN
problems (Alford et al. 2012; Höller et al. 2018, 2020) and
also employed in efficient HTN planners such as SHOP,
SHOP2 and SHOP3 (Nau et al. 1999, 2003, 2005; Goldman
and Kuter 2019). We extend the algorithm by introducing
‘universal’ vertices to the graph, similarly to universal states
of an alternating Turing machine (ATM) or AND nodes of
an AND/OR-tree, to deal with nondeterminism.

Algorithm 2: Alternating Strong Progression Search
1 Procedure StrongPlanExistence (tn, s,M, V ):
2 if tn = tn∅ then return true;
3 if (tn, s) ∈ V then return false;
4 V ← V ∪ {(tn, s)};
5 guess a first task t in tn;
6 if t is a primitive task then
7 if not τ(t, s) then return false;
8 tn← Remove(tn, t);
9 return for-all s′ ∈ γ(t, s)

StrongPlanExistence (tn, s′,M, V );
10 else
11 guess a method m inM;
12 tn← Decompose(tn, t,m);
13 return StrongPlanExistence (tn, s,M, V );

Algorithm 2 provides the procedure for determining
plan existence. Given a FONDMP HTN problem P =

〈D, sI , tnI〉 with D = 〈F ,NP ,NC , δ,M〉, the alternating
procedure StrongPlanExist(tnI , sI ,M, ∅) determines
if a strong solution for P exists. The meaning of the input
variables tn, s,M are straightforward. The product set V
stores previously progressed task networks and visited states
in order to detect cycles and deal with them.

The given ATM progression algorithm is an extension of
the textbook progression algorithm used for classical HTN
planning to our FONDMP HTN setting. Progression is a
search algorithm which makes nondeterministic guesses for
choosing whether to execute a random first primitive task
or to decompose a compound task. By first task of a task
network tn, we mean any task that has no predecessors in
tn. After doing so, we remove the chosen task from the task
network and change the state if the chosen task was primi-
tive. If a solution exists, then choosing the correct progres-
sion steps leads us to an empty task network, satisfying the
solution criterion. To extend this concept to nondeterminis-
tic domains, we use universal states of ATMs to recursively
check whether all possible progressed task networks from
an executed nondeterministic action contribute to a solution.

Line 2 checks whether we have progressed away the task
network and hence have reached an accepting state of the al-
ternating computation tree. Line 3 checks whether we have
visited the subproblem (tn, s) before (which requires check-
ing for task network isomorphism) and enters a rejecting
state. Line 4 then updates the previous task network-state
tuples. Line 5 makes a nondeterministic choice of a task t
with no predecessors in tn.

The remainder of the algorithm performs the progression
procedure depending on whether t is primitive or compound.
If t is primitive, lines 7 to 9 checks whether t is executable
at the progressed state s and if so proceeds to remove t
from the progressed task network and then recursively calls
the function “for all” possibly progressed states as given
by γ(t, s). The for-all statement represents entering a uni-
versal state for an ATM encoding. A more high level in-
terpretation is that we return the logical conjunction of the
StrongPlanExistence procedure for all possible pro-
gressed states. If t is compound, we guess a method for t and
expand the task network at t with such method and proceed
with the progression algorithm.

Note that this algorithm can be determinised by replacing
nondeterministic choices with branching as described in in
Alg. 1 by Höller et al. (2018). This branching implements an
OR node. We have however also to deal with for-all state-
ments, which correspond to AND nodes thus implementing
an AND/OR search. The optimisation described in Alg. 2 by
Höller et al. (2018) for reducing branching from decompo-
sition methods can also be applied here. The reason we do
not provide the deterministic version of the algorithm is to
emphasise the usual tools (alternation) required to deal with
nondeterministic tasks and for complexity analysis later.

Given that general HTN planning is undecidable, it is not
necessarily the case that the described algorithm terminates
though we will see later that the algorithm terminates for cer-
tain problem subclasses. We can also modify the algorithm
to allow for strong cyclic solutions by not using the set V of
visited subproblems but this will not be provided explicitly
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Figure 2: Visualisation of the alternating progression search
algorithm. Denote s1 = {1}, s2 = {2}, s1,2 = {1, 2}.

as it is not used for complexity proofs later.
Fig. 2 provides a visualisation of the high level com-

putation tree associated with the algorithm. We pro-
vide the abstract primitive problem it solves as follows.
Let D = 〈{1, 2} , {a, b, c} , ∅, δ, ∅〉 with δ defined by
a 7→ (∅, {({1}, ∅), ({2}, ∅)}), b 7→ ({2}, {1}, ∅), c 7→
({1}, {2}, ∅). Then we define the problem by P =
〈D, s∅, tnI〉 where s∅ = ∅ and tnI is the task network con-
tainting primitive tasks a followed by c, unordered to b.

Rectangular nodes in the figure represent search nodes
consisting of the currently progressed task network and
state. We omit the set V in the visualisation as we do not
worry about cycles for primitive problems. Black squares
indicate primitive tasks and circles the selection of a task by
line 5 of the algorithm. Blue nodes indicate universal states
where we have to check that all children nodes are accepting,
while the other rectangular nodes indicate existential states.
Blue arrows indicate the subtree of the computation tree cor-
responding to a strong solution.

Bounded Graph Search
In addition to progression search, there is another search
technique we can use to determine plan existence if we as-
sume that the number of reachable task networks under pro-
gression and state combinations are bounded (e.g. primitive,
acyclic, regular and tail-recursive problems). In contrast to
progression search or forward search, bounded graph search
can be viewed as backwards search with the additional as-
sumption that the search space is bounded. This will be help-
ful for complexity analysis later as AND/OR search, which
incurs additional complexity, is no longer required.

The main idea is that we can generate a bounded search
space in the form of a graph for a FONDMP HTN prob-
lem. Another way of interpreting this is that we compile a
FONDMP HTN problem into a state transition system with
initial and goal states and solve the compiled problem simi-
larly to how Cimatti et al. (2003) generates the whole search
space as a graph for a non-hierarchical FOND planning
problem. Specifically, let 〈S,A, I,G〉 be a state transition

system with S a set of states, A ⊆ S × 2S a set of nonde-
terministic actions defined with an action defined as a tuple
(sα, {s1, . . . , sn}) which when applied in sα can progress
to any of the states s1 to sn. Next, we have I ∈ S an ini-
tial state and G ⊆ S a set of goal states. The definitions
of strong and strong cyclic solutions are similar to that for
nondeterministic non-hierarchical planning.

To compile a FONDMP HTN problem into such a system
〈S,A, I,G〉, we begin by letting S be the set of all possible
reachable task networks and state tuples. Specifically, the
set of reachable task networks TNR for a problem is defined
to be the set of task networks that can be obtained from the
initial task network by applying a sequence of first primitive
tasks or methods for first compound tasks, quotient out by
isomorphism. We will call S the set of subproblems given
that they can be viewed as HTN problems with the same
domain D and their task networks are part of a solution to
the initial task network.

To consider an example, suppose we have a regular HTN
problem. Then TNR includes the initial task network tnI ,
the task networks for each method and all task networks that
can be reached from tnI under progression. Since regular
problems have at most one compound task in the current
task network, TNR is bounded exponentially corresponding
to exponentially many linearisations of these task networks.

In the compilation, we get I = (tnI , sI) and G =
{(tn∅, s) | s ⊆ F} denoting the initial and goal states. Then
we define actions by looping through all σα = (tnα, sα) ∈
S as follows. For each first task t in tnα,

• if t is primitive, define an action (transition)
a = (σα, {σi = (tnα \ {t}, si) | si ∈ τ(t, sα)}),

• else for each method applicable to t, define an action
a = (σα, {σβ = (tnβ , sα)}) where tnα →t

m tnβ .
The main idea of such actions is that they connect HTN sub-
problems depending on if one can reach one subproblem
from the other corresponding to an execution of some task.
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Figure 3: The whole search space of the (primitive) FOND
HTN problem from Fig. 2 (where t3 is not executable in s∅).

Fig. 3 illustrates the graph associated with the compiled
(primitive) HTN problem described in the section on alter-
nating progression search. Rectangular nodes represent sub-
problems which are now the states of the compiled classical
problem; directed edges represent actions and their effects.

To solve the system viewed as a nondeterministic non-
hierarchical planning problem, we employ algorithms for
weak, strong and strong cyclic planning in Sections 3 and
4 by Cimatti et al. (2003). All of them run in polynomial
time with respect to the size of the graph as they search the
graph a number of times to build up a solution.

Now we investigate the complexity of the algorithm by



looking at the runtime of the two main steps: building the
graph and solving it. As mentioned in the previous para-
graph, solving takes polynomial time with respect to the size
of the graph. Building the graph is a bit more involved given
that we have to check for graph isomorphism (GI) for equal-
ity of nodes. If checking for equality was only constant time,
then the time it takes to build the graph is at least exponential
in F as there are exponentially many reachable states, and
bounded above polynomially by the size of TNR. This is be-
cause we can build all 2|F| · |TNR| nodes first then for each
node check which other node is reachable from it. Given that
there are quadratically many directed edges between nodes,
this means that building would take at least exponential time
(polynomial with respect to the number of nodes which is
exponential), in the order of 2|F| · |TNR|.

Now, if we replace equality checking with GI, we get
complexity of order 2|F| · |TNR| · f(maxtn∈TNR

|tn|) where
f(n) denotes the complexity for solving GI for graphs with
n vertices. A safe but loose upper bound for f is the ex-
ponential function with a brute force algorithm for check-
ing task network isomorphism. In practice, we can apply
GI algorithms in literature with upper bound O(e

√
n logn)

(Babai and Luks 1983; Babai, Kantor, and Luks 1983) or re-
cent task network isomorphism solvers (Höller and Behnke
2021). Furthermore, almost all graphs are easy to solve as
seen in the nauty package (McKay and Piperno 2014).

In our membership proofs of HTN problem classes, the
order of |TNR| will range from polynomial to double expo-
nential with the upper bound on the size of a reachable task
network maxtn∈TNR

|tn| ranging from polynomial to expo-
nential. Thus, the complexity we will encounter for this al-
gorithm varies between exponential and double exponential.

Complexity Investigations
This section covers the complexity results for the novel for-
malism. We show that weak or primitive FONDMP HTN
problems are equivalent to weak or primitive FONDFM HTN
problems and thus have the same complexities. (I.e., each so-
lution in the one formalism corresponds to a solution in the
other.) For strong and strong cyclic problems we have that
all acyclic, regular, and tail-recursive classes are made one
step harder from their classical counterparts.

We begin by describing how weak and primitive FONDMP

HTN and FONDFM HTN planning problems separately have
the same semantic definitions which in turn means that the
complexity for FONDMP HTN HTN planning is equivalent
as that for FONDFM HTN for which there exists a range of
results (Chen and Bercher 2021). Specifically, we show that
the definitions for weak solutions are equivalent, and also
for strong solutions when problems are primitive.

Proposition 1. The definitions for primitive FONDMP HTN
and primitive FONDFM HTN planning are equivalent.

Proof. First observe a primitive FONDMP HTN policy no
longer requires instructions for method applications. Thus,
we only need to show that the policies consisting of only
primitive task execution for the respective problems are
equivalent. This can be noticed by viewing weak solutions

for both formalisms as a sequence of tasks that can be ex-
ecuted for favourable nondeterministic effects. Given a se-
quence, a policy can be formed for either formalism.

We notice that strong and strong cyclic solutions collapse
for primitive problems as the same task network cannot be
reached more than once due to the absence of methods. Then
we get our complexity for primitive problems from Prop. 1
above and Thm. 4.8 and 5.1 by Chen and Bercher (2021).

Corollary 1. Let P be a partially (totally ordered) primitive
FONDMP HTN problem. Deciding whether P has a strong
or strong cyclic solution is PSPACE-complete (in P).

Proposition 2. The definitions for weak FONDMP HTN and
weak FONDFM HTN planning are equivalent.

Proof. This can be realised by noticing that we can choose
the methods corresponding to a trace of a weak FONDMP

HTN solution for a weak FONDFM HTN solution. Con-
versely, we can construct a weak FONDMP HTN solution by
first expanding the methods for a weak FONDFM HTN solu-
tion and then creating a policy corresponding to a FONDFM

HTN policy for the expanded primitive task network.

As a direct consequence of this, we have that the
complexity for weak FONDMP HTN planning is equiva-
lent to that of weak FONDFM HTN planning by using
Thms. 4.1/4.2/4.4/4.5 by Chen and Bercher (2021).

For acyclic problems, we again exploit the fact that since
we will never reach the same task network twice under pro-
gression due to the absence of recursion in compound task
decomposition, strong and strong cyclic solutions collapse.
Although the term acyclic was originally intended to de-
scribe acyclicity of compound task decomposition in the de-
terministic HTN setting, it also happens to be the case that
FONDMP HTN solutions themselves are acyclic.

Theorem 1. Let P be a totally ordered acyclic FONDMP

HTN problem. Deciding whether P has a strong or strong
cyclic solution is EXPTIME-complete.

Proof. Membership: we show that our progression algo-
rithm (Alg. 2) always terminates and requires only poly-
nomial space. We exploit the fact that for acyclic prob-
lems we can never reach the same task network and state
pair more than once during progression. This means that
strong and strong cyclic solutions coincide and that even-
tually all search nodes will have an empty task network
or a rejecting state. Furthermore, we do not need the vari-
able V to store the progression history. This leaves us
with variables tn, s,M. Clearly, s and M are polynomi-
ally bounded. The size of tn under progression is bounded
in the same way as progression in the deterministic setting
given that decomposition of compound tasks are equivalent.
Thus, we can use Lemma 3.6 by Alford, Bercher, and Aha
(2015) for totally ordered acyclic problems to get that tn is
bounded polynomially. Hence, we have that totally ordered
acyclic strong/strong cyclic FONDMP HTN planning is in
APSPACE = EXPTIME (Chandra and Stockmeyer 1976).

Hardness: we outline how to give a polynomial reduction
of deciding whether an arbitrary ATM accepts an input string



wI in space k. This will give us APSPACE = EXPTIME-
hardness. The main idea of the reduction is that we ex-
ploit the fact that a polynomially space bounded ATM can
be decided in an exponential number of steps given that
there are at most exponentially many configurations C =
|Q| · (|Γ|+ 1)k · k using k space. We get |Q| from the num-
ber of states, (|Γ|+1)k from all possible length k strings that
can be constructed with the alphabet Γ plus a blank symbol,
and k for the number of locations the tape head can be. We
will define primitive tasks to mimic ATM transitions and use
a task hierarchy to define a task network that can be decom-
posed into exponentially many tasks.

To model ATM configurations and transitions, we first de-
fine facts that represent the tape contents and ATM states
with the same state variables as those in the PSPACE-
hardness proof of non-hierarchical planning (Bylander
1994). We also define similar actions with the modification
where given a ∀ state and an ATM transition, we create a
nondeterministic task with the same number of correspond-
ing effects, whereas in an ∃ state, we create a deterministic
task modelling each effect. This enforces that at a ∀ state, all
the next configurations must be accepting whereas at an ∃
state, we only have to choose one good effect.

To model exponentially many tasks, we construct com-
pound tasks and methods in the same way as in Section 4
by Alford, Bercher, and Aha (2015). For ease of notation,
let n be the smallest number such that 2n ≥ C, the num-
ber of configurations shown to be exponential above. The
main idea of the construction is that we define compound
tasks 2k · sim for 0 < k ≤ n, each with one method which
decomposes it into a totally ordered task network with two
tasks mapping to 2k−1 · sim. Next, we have 1 · sim have one
method for each primitive task n decomposing it to tn(n),
and one method decomposing it to tn∅. In this way, we can
define an initial task network tn(2n · sim) which can decom-
pose into up to any number of tasks bounded exponentially
to simulate an accepting ATM computation as required.

Proving EXPSPACE-hardness using ATMs is not as
straightforward anymore as our reduction now has to be log-
arithmic. Thus, we can no longer define a fact for each tape
cell which would cause a polynomial reduction and instead
we will extend the NEXPTIME-hardness proof for deter-
ministic acyclic HTN planning (Alford, Bercher, and Aha
2015) from the reduction of a nondeterministic Turing ma-
chine (NTM) to a reduction of an ATM. The idea of the orig-
inal proof is that we do not define explicit facts to represent
an NTM configuration but instead we only have one state
and tape cell fact true at any time. Totally ordered primitive
tasks are used to represent a witness and use synchronisation
techniques to model and verify NTM transitions. This is be-
cause we can compactly represent k tasks in a task network
with only a logarithmic number of defined tasks.

Theorem 2. Let P be an acyclic FONDMP HTN problem.
Deciding whether P has a strong or strong cyclic solution is
EXPSPACE-complete.

Proof. Membership: we again use our alternating progres-
sion algorithm (Alg. 2) and the fact that strong and strong

cyclic solutions collapse for acyclic problems. Also simi-
larly to the proof of membership of Theorem 1, we do not
require the variable V although this is not necessary now as
we will provide a time bound. We notice that the initial task
network can be decomposed into a primitive task network
with bounded size mk+1 where k is the maximum stratifica-
tion of the compound tasks, and m is the size of the largest
task network in the problem as shown in Corollary 3.2. by
Alford, Bercher, and Aha (2015). Thus, the progression al-
gorithm always terminates and determines if a solution ex-
ists within an exponential number of steps as the number of
methods which can be applied is bounded exponentially and
similarly with the execution of primitive tasks. So the prob-
lem is in AEXPTIME = EXPSPACE.

Hardness: we outline how to give a logarithmic reduction
of deciding whether an arbitrary ATM A accepts a string
wI in time k. We extend the proof of NEXPTIME-hardness
for deterministic acyclic problems in Thm. 6.1 by Alford,
Bercher, and Aha (2015) which involved a reduction from
an NTM. The idea of the original proof is to represent a wit-
ness for an NTM or a sequence of strings w0, . . . , wk with
exponentially many totally ordered tasks as described in the
proof of Thm. 1 above. Each task asserts a fact representing
a tape symbol at a tape cell, of which only one can be true at
a given time. A second sequence of totally ordered tasks are
synchronised with these tasks to check whether the ith char-
acter of strings wj and wj+1 are equivalent. A third totally
ordered sequence tracks the tape head and determine transi-
tions. Thus, the transformed problem is able to generate any
witness for the NTM with input wI and yields a solution
only if the witness is a proof for the original problem.

The modification we describe is by introducing additional
nondeterministic tasks to model ATM transitions. In the
original proof, there exist deterministic step∃ tasks for each
nondeterministic effect of each nondeterministic transition
in the first totally ordered sequence of tasks. We can intro-
duce additional nondeterministic step∀ tasks which model
universal ATM transitions. To make this work, we have the
additional ATM assumption that at a given universal state,
all transitions step in the same direction in order for the
synchronisation process to still work. This can be compiled
away by introducing additional states and deterministic tran-
sitions which take an ATM state back to its intended po-
sition after every universal transition. The correspondence
of solutions still holds as a strong solution holds iff a com-
putation tree exists for A determining that the initial con-
figuration is accepting. This comes from being able to dy-
namically choose the correct decompositions in the second
and third task sequences for verifying a computation tree in-
duced by the first sequence of tasks. Thus, the problem is
AEXPTIME = EXPSPACE-hard and complete.

For regular problems, we exploit the fact that FONDMP

HTN planning is able to model non-hierarchical nondeter-
ministic planning whose complexity we know. The idea of
the reduction is that we can define a compound task which
can decompose into arbitrarily many primitive tasks corre-
sponding to actions for a non-hierarchical planning problem.



Theorem 3. Let P be a regular totally or partially ordered
FONDMP HTN problem. Deciding whether P has a strong
or strong cyclic solution is EXPTIME-complete.

Proof. Membership: we use the bounded graph search algo-
rithm described in the Search Algorithms section and recall
that the set of reachable task networks for regular problems
is bounded exponentially. This is also true for the number of
states such that the size of S and hence the size of the prob-
lem to solve is exponential. Since the subroutine to solve
strong or strong cyclic plan existence is polynomial with re-
spect to the size of the graph, the problem is in EXPTIME.

Hardness: we model non-hierarchical nondeterministic
planning problems with regular FONDMP HTN problems
in the same way described for the deterministic case (Erol,
Hendler, and Nau 1996). The main idea is that we create a
compound task repeat which has a method for every action
in the original problem decomposing into a totally ordered
task network with a task corresponding to such action fol-
lowed by repeat. We also add a task done with precondi-
tion the goal condition. The only extension from the original
proof is that we are able to model nondeterministic actions
using nondeterministic tasks. The reduction mimics the me-
chanics of the original problem so strong and strong cyclic
solutions correspond. It was shown by Rintanen (2004) that
plan existence for both strong and strong cyclic planning is
EXPTIME-complete by reduction from ATMs. Hence, the
problem in question is EXPTIME-hard and complete.

Theorem 4. Let P be a totally ordered tail-recursive
FONDMP HTN problem. Deciding whether P has a strong
or strong cyclic solution is EXPTIME-complete.

Proof. Membership: we will again use the bounded graph
search algorithm provided in the Search Algorithms section
and show that it runs in exponential time. To do this, we
show that the number of reachable task networks under pro-
gression is only exponential. First, we have from Lem. 3.6
by Alford, Bercher, and Aha (2015) that under progression
of a totally ordered tail-recursive HTN problem P , a task
network is bounded polynomially by m = k + r · h for k
initial tasks, r the largest number of tasks in any method for
P and h the height of the stratification on compound tasks.
Note that although we are in the nondeterministic setting
now, the bounds calculated for deterministic HTN problem
carry over as the decomposition mechanics are the same.

Thus, letting n = |NP ∪NC | be the number of task
names in P , the number of reachable task networks is
bounded exponentially by

∑m
i=0 i

n ≤ (m+ 1)mn. The sum
arises from counting the number of task networks of size i
for 0 ≤ i ≤ n and the in from choosing any of n task names
for each task in a totally ordered task network. Hence, the
graph we build in the search algorithm has at most nm · 2|F|
nodes. Building and searching the graph takes exponential
time, and thus the algorithm runtime.

Hardness: Given that regular problems are a special case
of tail-recursive problems and that totally ordered regu-
lar strong and strong cyclic HTN planning is EXPTIME-
complete, we have EXPTIME-hardness for totally ordered
tail-recursive strong and strong cyclic HTN planning.

Theorem 5. Let P be a tail-recursive FONDMP HTN prob-
lem. Deciding whether P has a strong or strong cyclic so-
lution is in 2-EXPTIME. Determining existence of a strong
cyclic solution for P is EXPSPACE-hard and a strong solu-
tion is 2-EXPTIME-hard and hence complete.

Proof. Membership: Again we use the bounded graph
search algorithm but now the upper bound for reachable task
networks is higher given that there is no longer any total or-
der assumption. From Lemma 3.4 by Alford, Bercher, and
Aha (2015), now the size of a task network under progres-
sion is bounded exponentially by m = k · rh with variables
the same as described in Thm. 4. Thus, letting n be the num-
ber of task names, the number of reachable task networks
is upper bounded by |TNR| ≤

∑m
i=0 i

n · f(i), where f(i)
counts the number of directed acyclic graphs for i labelled
vertices. Again, in gives a loose upper bound for calculat-
ing the number of reachable non ordered task networks of
size i, and the function f then gives us the number of pos-
sible partial orderings for size i task networks with names
attached given that partial orderings are synonymous with
directed acyclic graphs. We can provide a loose upper bound
for the number of DAGs by counting the number of directed
graphs: f(n) ≤

∑n2

i=0

(
n2

i

)
= 2n

2

. This follows by noticing
that there are at most n2 directed edges for n vertices and
that there are

(
n2

i

)
ways of choosing i edges for building

a directed graph with i edges. Thus the number of reach-
able task networks is bounded by |TNR| ≤

∑m
i=0 i

n · 2i2 ≤
(m + 1) ·mn · 2m2

. Since m is exponential, the size of the
graph is bounded double exponentially. Thus, the algorithm
takes double exponential time to run.

Hardness: For strong cyclic problems, this follows from
the fact that the deterministic version of the problem is
EXPSPACE-complete (Alford, Bercher, and Aha 2015) and
is a special case of nondeterminism. For strong problems,
we extend the EXPSPACE-hardness proof for deterministic
tail-recursive problems in the same fashion as described in
Thm. 2 to get AEXPSPACE = 2-EXPTIME-hardness.

Conclusion
We revealed limitations of a previously introduced formali-
sation for HTN planning for fully observable environments
and actions with nondeterministic effects. There, one has to
find a primitive refinement first and then deal with action
outcome uncertainty later on (FONDFM HTN planning). We
showed that there do exist solutions to such problems that
can only be found when the choice of decompostion meth-
ods is delayed after the execution of nondeterministic ac-
tions (FONDMP HTN planning).

For this new formalism we provided a complexity inves-
tigation that shows that FONDMP HTN is almost always one
class harder than the most expressive variant of FONDFM

HTN planning for totally ordered problems. For the partially
ordered variants we cannot draw a clear conclusion since
many results for FONDFM HTN planning are not yet tight.
We have also provided two search algorithms to aid with
membership proofs but also to serve as baseline methods for
future implementations.
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