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Abstract

Much progress has been made in advancing the state of the
art of HTN planning theory in recent years. However, scarce
studies have been made with regards to the theory and com-
plexity of HTN problems on nondeterministic domains. In
this paper we provide a novel formalisation for fully observ-
able nondeterministic HTN planning. We propose and study
different solution criteria which differ in when nondetermin-
istic action outcomes are considered: at plan generation or
at plan execution. We integrate our solution criteria with no-
tions of weak and strong plans canonical in nondeterministic
planning and identify similarities and differences with plans
in other fields of AI planning.
We also provide completeness results for a majority of HTN
problem subclasses and show the significant result that prob-
lems are not made any harder under nondeterminism for cer-
tain solution criteria by using compilation techniques to de-
terministic HTN planning. This supports and justifies the
practicality and scalability of extending HTN problems over
nondeterministic domains to deal with real world scenarios.

1 Introduction
Hierarchical Task Network (HTN) planning is a powerful
planning formalisation focused on problem decomposition.
Tasks in HTN planning can be either primitive or compound.
The former corresponds to classical planning actions, while
the latter are abstract notions of actions which can be de-
composed into a set of subtasks by methods defined in an
HTN problem. The hierarchy induced by such compound
tasks gives HTN planning and its variants such as HTN plan-
ning with task insertion (TIHTN) much expressive power by
the ability to model problems of various complexities, from
standard non-hierarchical planning to undecidable problems
(Erol, Hendler, and Nau 1996; Geier and Bercher 2011; Al-
ford et al. 2014; Alford, Bercher, and Aha 2015a,b).

Background and Related Work
The applications and extensions of hierarchical planning to
deal with uncertainties in the real world are manifold: in-
tegrating HTNs for solving and learning standard nonde-
terministic planning problems with planners such as YoYo
(Kuter et al. 2005, 2009) and ND-SHOP2 (Kuter and Nau
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2004) and the learning algorithm HTN-MAKERND (Hogg,
Kuter, and Muñoz-Avila 2009), integrating plan repair
(Goldman, Kuter, and Freedman 2020; Höller et al. 2020),
integration with Belief-Desire-Intention agents, which con-
sist of goals analogous to decomposition in HTN planning,
for planning ahead in dynamic systems (Sardiña, de Silva,
and Padgham 2006; Meneguzzi and de Silva 2015), inte-
grating planning and learning via hierarchical methods in
dynamically changing environments (Patra et al. 2020), and
planning over partially observable domains (Kuter et al.
2007; Zhuo, Muñoz-Avila, and Yang 2014; Richter and Bi-
undo 2017).

To the best of our knowledge there do not exist any for-
malisations for an extension of standard deterministic HTN
problems that feature uncertainty in action outcomes. The
formalisation that is closest to a Fully Observable Nondeter-
ministic (FOND) HTN approach is that used in the planners
YoYo and ND-SHOP2 (Kuter et al. 2005, 2009) which em-
ploys HTN techniques for solving standard nondeterministic
planning problems. In other words, their model uses HTNs
to serve as advice on how to solve the underlying classi-
cal FOND problem, not to find a decomposition of the ini-
tial plan as in HTN planning. The case is similar for HTN-
MAKERND which learns HTNs in order to speed up search
for the ND-SHOP2 planner over standard nondeterministic
planning domains.

Contributions
Our proposed formalisation extends standard HTN planning
by introducing nondeterminism to primitive tasks and intro-
ducing additional solution criteria for solving nondetermin-
istic HTN problems: linearisation- and outcome-dependent
solutions. The former deals with nondeterministic action ef-
fects at plan generation and the latter at plan execution. We
also define weak and strong variants of such solution criteria
canonical to nondeterministic planning (Cimatti et al. 2003)
which describe the likeliness of plan success.

Abundant studies have also been made regarding the the-
ory of planners with uncertainty (Geffner and Bonet 2013)
but none for FOND HTN planners outside the theoretical
and empirical complexity analysis for the ND-SHOP2 and
YoYo planners over certain example domains (Kuter and
Nau 2004; Kuter et al. 2005, 2009). We will study the com-
plexity of the plan existence problem for the various solution



Hierarchy Order
FOD FOND

Weak Strong
linearisation-dependent outcome-dependent

primitive total P∗ NP [4.1] P∗ [4.8]
partial NPα NP [4.2] NP [4.7] PSPACE [5.1]

no recursion
(acyclic)

total PSPACEβ PSPACE [4.4] PSPACE [4.8]
partial NEXPTIMEβ NEXPTIME [4.4] NEXPTIME [4.7] EXPSPACE∗ [5.2]

regular total PSPACEα PSPACE [4.5] PSPACE [4.8]
partial PSPACEα PSPACE [4.5] PSPACE [4.7] EXPSPACE∗ [5.3]

tail-
recursion

total PSPACEβ PSPACE [4.4] PSPACE [4.8]
partial EXPSPACEα,β EXPSPACE [4.4] EXPSPACE [4.7] semidecidable∗ [3.1]

arbitrary
recursion

total EXPTIMEβ EXPTIME [4.4] EXPTIME [4.8]
partial semi- & undecidableα,γ semi- & undecidable [3.1] semi- & undecidable [3.1] semi- & undecidable [3.1]

Table 1: Comparison of complexity results for FOD and FOND HTN planning. Results marked α are shown by Erol, Hendler,
and Nau (1996), and β by Alford, Bercher, and Aha (2015a). The undecidability result γ was reproduced by Geier and Bercher
(2011) for the HTN formalisation used in this study. Classes are complete unless marked ∗ where only membership is known.
Prop. 2.12 collapses weak problems and Prop. 2.15 collapses totally ordered strong problems.

criteria and defined HTN problem subclasses where recur-
sion on compound task decomposition is restricted: acyclic,
regular and tail-recursive problems (Erol, Hendler, and Nau
1996; Alford et al. 2012; Alford, Bercher, and Aha 2015a).
We show that for several of the solution criteria, problems
can be compiled into their deterministic counterparts with-
out much overhead and have the same complexity. We also
provide completeness results for a majority of other prob-
lems and loose bounds for everything else. Complexity re-
sults are summarised in Table 1 alongside results from Fully
Observable Deterministic (FOD) HTN planning and rela-
tions and compilations between problems are illustrated in
Fig. 1.

weak ODweak LD strong LD strong OD= =

FOD

Figure 1: Relations and reductions between problems. Solid
arrows between problems indicate that we have specified ex-
plicit polynomial reductions for all problem subclasses and
dotted arrows for all but primitive and regular problems.
Gray symbols are true only if total order on tasks is enforced.

2 Formalism
Here we will provide a complete formalisation of FOND
HTN planning by introducing nondeterminism to primitive
tasks in the formalisation for deterministic HTN planning by
Bercher, Alford, and Höller (2019). We begin with the fun-
damental building blocks of HTN planning: task networks,
the concept of partially ordered action sequences. We then
use task networks to construct an HTN planning domain,
problem and finally all of our proposed solution criteria.

Definition 2.1 (Task Network). A task network tn is a tuple
〈T,≺, α〉 where

• T is a finite set of task id symbols,
• ≺ ⊆ T × T is a strict partial order on T ,
• α : T → N maps a task id to some task name in N .

The requirement of task id symbols and names arises from
the fact that some tasks, such as ‘move’, may occur several
times in a task network. Thus, task id symbols are unique but
the mapping α is not necessarily injective. Usually when we
refer to a ‘task’ of a task network, we mean task id symbol.

We also introduce an equivalence between two task net-
works. Two networks tn = 〈T,≺, α〉 and tn′ = 〈T ′,≺′, α′〉
are isomorphic if there exists a bijection σ : T → T ′ where
for all t, t′ ∈ T , (t, t′) ∈ ≺ iff (σ(t), σ(t′)) ∈ ≺′ and
α(t) = α′(σ(t)). In other words, they have the same un-
derlying structure but with different task id symbols.

Definition 2.2 (Planning domain). An HTN domain D is a
tuple 〈F , NP , NC , δ,M〉 where we have

• a finite set of facts F ,
• a finite set of primitive task names NP ,
• a finite set of compound task names NC ,
• an action mapping δ : NP → A,
• a finite set of decomposition methodsM,

where NP ∪NC = N are disjoint, and A ⊆ 2F × 22
F×2F

denotes the set of nondeterministic primitive tasks. A prim-
itive task or action is a tuple of preconditions and effects
a = (pre(a), eff(a)) with pre(a) ∈ 2F and eff(a) =
{(addi(a), deli(a)) | 1 ≤ i ≤ n} for n dependent on a. For
ease of readability, we will use deterministic (add, pre, del)
notation actions which only have one effect. This is remi-
niscent of classical planning actions and so we formalise the
idea of applying primitive tasks to states.



Define S = 2F where states are associated with a set of
facts. Let τ : A× S → {>,⊥} denote executabilitywith

τ(a, s) =

{
> if pre(a) ⊆ s
⊥ otherwise.

For ease of notation later, we also define τ on primitive
task names and primitive tasks by τ(n, s) = τ(δ(n), s) and
τ(t, s) = τ(δ(α(t)), s) for n ∈ NP and t ∈ T respectively.

Next we define an application function γ : A× S → 2S .
For a ∈ A, s ∈ S , if τ(a, s) = ⊥, γ(a, s) is undefined.
Otherwise, we have

γ(a, s) = {(s \ deli(a)) ∪ addi(a) | 1 ≤ i ≤ |eff(a)|} .

Similarly define the application function for primitive task
names and primitive tasks by γ(n, s) = γ(δ(n), s) and
γ(t, s) = γ(δ(α(t)), s).

Definition 2.3 (Planning problem). An HTN problem P is
a tuple 〈D, sI , tnI〉 with D an HTN domain, sI ∈ 2F an
initial state and tnI an initial task network.

Next, we introduce the machinery to refine our task net-
works by decomposing compound tasks. Compound tasks
and methods contribute to the abstract concept of hierarchy
between tasks in an HTN problem as decomposition induces
an implicit transitive relation between compound tasks.

Definition 2.4 (Decomposition). Define m = (c, tnm) with
c ∈ NC and tnm = 〈Tm,≺m, αm〉 to be a (decomposi-
tion) method. We can apply m to tn1 = 〈T1,≺1, α1〉 if
there exists some t ∈ T1 where α1(t) = c, and in this case
we say m decomposes t in tn1 to generate a task network
tn2 = 〈T2,≺2, α2〉 with

T2 := T ′1 ∪ T ′m,
≺2 := (≺1 ∪ ≺′m) |T ′1

∪ {(t1, t2) ∈ T ′1 × T ′m | (t1, t) ∈ ≺1}
∪ {(t1, t2) ∈ T ′m × T ′1 | (t, t2) ∈ ≺1} ,

α2 := (α1 ∪ α′m) |T ′1 ,

where T ′1 = T1 \ {t} and tn′m = 〈T ′m,≺′m, α′m〉 is a task
network isomorphic to tnm such that T ′1 ∩ T ′m = ∅. The
requirement for disjoint T ′1 and T ′m is such that the function
(α1 ∪ α′m) |T ′1 is well defined and (≺1 ∪ ≺′m) |T ′1 is still
partial. The |T ′1 symbol denotes restriction of the α map and
≺ ordering in the canonical way to only tasks in T ′1.

Note that in the context of deterministic HTN planning,
there are two possible ways to define method preconditions:
one which appends preconditions to methods which is seen
in the HTN domains of YoYo (Kuter et al. 2009) and one
which enforces that the appended precondition be checked
exactly before a first task inside the corresponding method
as seen in deterministic HTN planner SHOP2 (Nau et al.
2003) and in HDDL1, an extension of PDDL for hierarchi-
cal planning problems (Höller et al. 2020). The first version
can be compiled away easily by adding a first task with the

1Note that this definition was implemented only as an optional
feature in HDDL and not necessarily enforced.

same precondition and no effect to the task network, whereas
the second version has no obvious compilation even in the
deterministic setting. However, this second definition could
also be integrated into the provided formalism if desired.

We now begin to describe solution criteria. We adapt the
ideas of weak and strong solutions canonical to planners
in nondeterministic domains as described by Cimatti et al.
(2003). Readers familiar with these concepts will notice that
strong cyclic solutions have been omitted in this study due
to the lack of space and thus will be left for future work.
Definition 2.5 (Primitive task network). Let P be an HTN
problem and tn be a task network. Then tn is a primitive
task network if α(T ) ⊆ NP , meaning that it only consists
of primitive tasks. We say that tn is an achievable primitive
task network if it can be decomposed from the initial task
network tnI of P by a finite number of methods fromM.

We propose two ways to define solutions for FOND HTN
problems: via linearisation and policies. Both have their own
trade-offs between complexity and plan flexibility.
Definition 2.6 (Linearisation). Let tn = 〈T,≺, α〉 be a task
network and T ′ ⊆ T with |T ′| = n. A linearisation of T ′
is an ordering of all its elements compatible with the partial
ordering ≺. A linearisation of tn is a linearisation of T .
Definition 2.7 (Linearisation-dependent solution). Let P
be an HTN problem and tn = 〈T,≺, α〉 a task network.
Then we say that a linearisation t1, . . . , tn of tn is a strong
linearisation-dependent (LD) solution for P if tn is an
achievable primitive task network, and for all 1 ≤ i ≤ n
and for all s ∈ Si it holds that τ(ti, s) = >, where Si is
defined recursively by

Si :=

{⋃
s∈Si−1

γ(ti−1, s), if 1 < i ≤ n
{sI} , if i = 1.

On the other hand, a linearisation t1, . . . , tn of tn is de-
fined to be a weak LD solution if tn is an achievable prim-
itive task network and there exists states s1, . . . , sn, sn+1

with s1 = sI and for all 1 ≤ i ≤ n, we have τ(ti, si) = >
and si+1 ∈ γ(ti, si).

For strong solutions, this is equivalent to saying that all
tasks are guaranteed to be executed in order of the linearisa-
tion regardless of nondeterministic task effects. This concept
is similar to conformant plans (Goldman and Boddy 1996)
in standard non-hierarchical planning under uncertainty. On
the other hand, weak LD solutions only require linearisa-
tions to be executable for favourable task effects.

However, the definition of strong LD solutions appears to
be very strict as nondeterministic task effects are only con-
sidered at plan generation and not execution. Thus, we will
introduce the more flexible solution using policies. A policy
tells a planner what action to execute given a current state
and task history. The input for remembering previously ap-
plied tasks is necessary for preserving task ordering.
Definition 2.8 (Policy). A policy π for a primitive task net-
work tn is a function π : 2T ×S → T where 〈(T ′, s), t〉 ∈ π
only if t /∈ T ′, and ∀t̃ ∈ T \ T ′, t̃ 6≺ t.



We now define an execution structure and sequence in-
duced by a policy introduced by Cimatti et al. (2003) for
planners over nondeterministic domains which is conceptu-
ally analogous to a state transition system. We also intro-
duce an additional requirement to an execution sequence in
the existing literature where for any path in the system, the
tasks which trace out the path preserve partial ordering.

Definition 2.9 (Execution structure). Let D be an HTN do-
main and tn be a primitive task network. Let S ⊆ S and
T ′ ⊆ T . Then S is executable by T ′ if there exists a se-
quence of states s1, . . . , sn+1 in S (possibly with repetition)
and a linearisation t1, . . . , tn of T ′ with si+1 ∈ γ(ti, si) for
all 1 ≤ i ≤ n.

The execution structure induced by a policy π for tn is a
tuple K = 〈Q,R〉 where Q ⊆ S and R ⊆ S × T × S are
minimal sets satisfying the conditions sI ∈ Q, and if s ∈ Q
and there exists S ⊆ Q, T ′ ⊆ T with

• s ∈ S,
• S is executable by T ′,
• π(T ′, s) = t, and
• τ(t, s) = >,

then for all s′ ∈ γ(t, s) we have s′ ∈ Q and (s, t, s′) ∈ R.

Definition 2.10 (Execution sequence). Let K = 〈Q,R〉
be the execution structure induced by a policy. An execu-
tion sequence of K is a finite sequence of task-state tuples
〈t1, s1〉 , . . . , 〈tk, sk〉 with

• s1 = sI ,
• τ(tk, sk) = >,
• (si, ti, si+1) ∈ R for 1 ≤ i < k, and
• t1, . . . , tk is a linearisation of {ti | 1 ≤ i ≤ k}.
An execution sequence is complete if t1, . . . , tk is a lineari-
sation of tn.

Definition 2.11 (Outcome-dependent solution). Let P be an
HTN problem and tn a task network. We say that a policy
π for tn is a strong outcome-dependent (OD) solution if tn
is an achievable primitive task network and every execution
sequence of K induced by π is complete.

We say that π for tn is a weak OD solution if tn is an
achievable primitive task network and there exists a com-
plete execution sequence of K induced by π.

In other words for strong solutions, if we were to fix ef-
fects for each task, then there exists an executable linearisa-
tion of such tasks with fixed effects. Thus, the main differ-
ence between strong OD and LD solutions is that task lin-
earisation is dynamic and determined at plan execution for
the former and fixed at plan generation for the latter.

The following two propositions compare our proposed so-
lution definitions. The first states that the two definitions for
weak solutions are equivalent such that we can collapse lin-
earisation and outcome dependency. However, this is false
for strong solutions where implication only goes one way.

Proposition 2.12. Let P be a FOND HTN problem. There
exists a linearisation of tn that is a weak LD solution iff
there exists a policy for tn that is a weak OD solution.

Proof. ( =⇒ ) Suppose the linearisation t1, . . . , tn of tn is
a weak LD solution for P . Then by definition there exists
states s1, . . . , sn with τ(ti, si) = > for 1 ≤ i ≤ n with
s1 = sI . Then define a policy π for tn by

π = {〈(Ti, si), ti+1〉 | 1 ≤ i < n}

where Ti = {tj | 1 ≤ j < i}. Its induced execution struc-
ture is K = 〈Q,R〉 with Q = {s1} ∪

⋃
1≤i<n γ(ti, si)

and R =
⋃

1≤i<n {(si, ti, s̃) | s̃ ∈ γ(ti, si)}. A complete
execution sequence of K is given by 〈t1, s1〉 , . . . , 〈tn, sn〉.
Thus, π for tn is a weak OD solution.

(⇐= ) Suppose the policy π for tn is a weak OD solution
with induced execution structure K = 〈Q,R〉. Then it has
a complete execution sequence 〈t1, s1〉 , . . . , 〈tn, sn〉 and so
the linearisation t1, . . . , tn of tn is a weak LD solution.

Proposition 2.13. Let P be a FOND HTN problem. If there
exists a linearisation of tn that is a strong LD solution, then
there exists a policy for tn which is a strong OD solution.
However, the converse statement does not hold.

Proof. ( =⇒ ) Suppose t1, . . . , tn of tn is a strong LD so-
lution. Define the policy π for tn by

π =
⋃

1≤i<n {〈(Ti, si,j), ti+1〉 | si,j ∈ Si} ,

again with Ti defined in the proof of the previous propo-
sition. Its induced execution structure is K = 〈Q,R〉
with Q = {s1} ∪

⋃
1≤i<n

⋃
si,j∈Si

γ(ti, si,j) and R =⋃
1≤i<n

⋃
si,j∈Si

{(si,j , ti, s̃) | s̃ ∈ γ(ti, si,j)}.
The execution sequences of K are all of the form

〈t1, s1,j1〉 , . . . , 〈tn, sn,jn〉 where s1,j1 = sI and si,ji ∈
γ(ti−1, si−1,ji−1) and are complete since t1, . . . , tn is a lin-
earisation of tn by assumption. Thus, π for tn is a strong
OD solution.

( 6⇐= ) Consider the following HTN problem where a
strong OD solution exists but not a strong LD solution. Let
D = 〈F , NP , ∅, δ, ∅〉 with F = {1, 2} , NP = {a, b, c} ,
and mapping δ defined by

a 7→ (∅, {({1} , ∅), ({2} , ∅)}),
b 7→ ({1} , {2} , ∅),
c 7→ ({2} , {1} , ∅).

Define the problem P = 〈D, sI , tnI〉 with sI = ∅ and
tnI = 〈T,≺, α〉, T = {t1, t2, t3}, ≺ = {(t1, t2), (t1, t3)}
and α defined by t1 7→ a, t2 7→ b, t3 7→ c.

Then a strong OD solution is π for tnI defined by

(∅, sI) 7→ t1,
({t1} , s1) 7→ t2,

({t1} , s2) 7→ t3,

({t1, t2} , s3) 7→ t3,

({t1, t3} , s3) 7→ t2,

with s1 = {1} , s2 = {2} , s3 = {1, 2}.
All this information can be represented compactly with

a diagram (Fig. 2) of the induced execution structure where
circles denote states and directed arrows determine relations.

There are only two execution sequences in the execution
structure induced by π given by 〈t1, sI〉 , 〈t2, s1〉 , 〈t3, s3〉
and 〈t1, sI〉 , 〈t3, s2〉 , 〈t2, s3〉 which are both complete such
that π is a strong OD solution.



sI s1 s2 s3a

a b

c b, c

Figure 2: Execution structure induced by π.

However, there are no linearisations of tn which are
strong LD solutions. The only two possible order preserv-
ing linearisations t1, t2, t3 and t1, t3, t2 do not satisfy the
LD solution criterion as they are not executable in order for
all possible nondeterministic action effects.

However, there exists a powerful condition on the order-
ing of tasks in an HTN domain which when met allows us to
collapse strong LD and OD solutions.
Definition 2.14 (Totally ordered planning problem). An
HTN problem P is a totally ordered planning problem if the
ordering of its initial task network tnI and the task networks
of every method is total.
Proposition 2.15. Let P be a totally ordered FOND HTN
problem. There exists a linearisation of tn that is a strong
LD solution iff there exists a policy π for tn which is a strong
OD solution.

Proof. For totally ordered primitive tasks, there exists only
one possible candidate policy which corresponds with the
linearisation of tasks induced by the total ordering.

A policy for a task network can become exponential
in size which can be realised by noticing that the execu-
tion structure representation of a policy has a tree structure
with branching resulting from nondeterministic task effects.
However, we can verify that a policy is a solution for a prim-
itive task network using a depth-first search on the execu-
tion structure to check whether there exists/all execution se-
quences are complete for weak/strong solutions respectively.
Proposition 2.16. Let P be a FOND HTN problem. Let tn
be a primitive task network and π a policy. It is in P in the
size of π to verify that π for tn is an OD solution.

We will show in Section 5 that the problem for determin-
ing the existence of a policy which contributes towards a
solution for primitive task networks is PSPACE-complete
despite the fact the a policy is exponential in size.

3 Problem Class Definitions
Erol, Hendler, and Nau (1996) showed that general FOD
HTN planning is undecidable by reduction from the prob-
lem of whether the languages produced by two context-free
grammars have a non-empty intersection. The proof was re-
produced by Geier and Bercher (2011) to show that this fact
is still true for their simplified formalisation we have built
upon. Since FOD versions of FOND problems provide lower
complexity bounds as the former are special cases of the lat-
ter with |eff(a)| = 1 for all actions, general FOND HTN
planning is also undecidable. However, breadth-first search
can be used to find a solution so we have semidecidability.

Theorem 3.1. Let P be a FOND HTN problem. Deciding
whether P has a solution is semi- & undecidable. This holds
for {weak, strong} × {LD, OD} problems.

This shows that it is not feasible to consider general HTN
planning for practical applications. However, there exist re-
strictions on recursion of compound task decompositions
problems easier. The first restriction which we will introduce
is elimination of hierarchies in a FOND HTN problem.

Definition 3.2 (Primitive planning problem). An HTN prob-
lemP is primitive if tnI is primitive and hence an achievable
primitive task network. Note that sets NC and M are now
irrelevant.

The hierarchical problems we will study are regular,
acyclic (Erol, Hendler, and Nau 1996) and tail-recursive
problems (Alford et al. 2012; Alford, Bercher, and Aha
2015a).

Definition 3.3 (Regular problem). An HTN problem P is
regular if for its initial task network tnI = 〈T,≺, α〉 and
for all its methods (c, 〈T,≺, α〉) ∈M it holds that

• there is at most one compound task in T , and
• if t ∈ T is compound, it is the last task, meaning that for

all t′ ∈ T with t′ 6= t we have t′ ≺ t.
We rely on the concept of stratifications proposed by Al-

ford et al. (2012) to help define acyclic and tail-recursive
problems.

Definition 3.4 (Stratification). A stratification on a set S is
a total order ≤ on S. An inclusion-maximal subset C ⊆ S
is a stratum if for all x, y ∈ C both x ≤ y and y ≤ x holds.

A B C D E

Figure 3: Stratification on S.

A stratification can be represented diagrammatically
(Bercher and Höller 2018) by a directed graph (Fig. 3). For
example, let S = S1 ∪ S2 ∪ S3 with S1 = {A} , S2 =
{B,C} , S3 = {D,E} be stratas. Add the relations B ≤ A
and D ≤ C and the number of strata is still 3.

Definition 3.5 (Acyclic problem). An HTN problem P is
acyclic if no compound task can reach itself via decomposi-
tion. More formally, we can define a stratification on NC in
P with

• c ≤ c′ if there exists a method (c, 〈T,≺, α〉) ∈ M and
α(c′) ∈ T , and

• for all c, c′ ∈ NC , if c ≤ c′, then c′ 6≤ c.
Definition 3.6 (Tail-recursive problem). An HTN problem
P is tail-recursive if we can define a stratification on NC of
P where for all methods (c, 〈T,≺, α〉) it holds that

• if there exists a last compound task t ∈ T , then we have
α(t) ≤ c, and

• for any non-last compound task t ∈ T , we have α(t) ≤ c
and c 6≤ α(t).



In other words, the last task of a tail-recursive task net-
work in a method (if it exists) is at most as hard as the de-
composed task c, and any other non-last task is on a lower
stratum and hence easier than c. Note further that regular
and acyclic problems are special cases of tail-recursiveness.
Although these definitions are not talked about much in Sec-
tion 4, they will be studied more closely in Section 5.

4 Complexity Results via Compilation
In this section we will derive a majority of complexity re-
sults by compiling both strong LD and weak problems into
deterministic problems to get membership for some problem
subclasses and provide algorithms for the remaining prob-
lems. In fact, all results here will be complete with the ex-
ception of a problem shown to be in P. Recall that determin-
istic problems are a special case of FOND HTN planning so
we also have hardness without many complex reductions.

Weak Problems
The compilation of weak problems to FOD problems will
require introducing compound tasks so clearly we cannot
apply this technique for primitive problems. Thus, we will
give explicit complexity proofs for such problems first.
Theorem 4.1. Let P be a totally ordered, primitive FOND
HTN problem. Deciding whether P has a weak solution is
NP-complete.

Proof. Membership: we check that the only possible solu-
tion candidate, the linearisation t1, . . . , tn induced by a total
ordering, is a solution by guessing the effects of the primi-
tive tasks and verifying in linear time that the tasks are ex-
ecutable at each state from the effects we guessed. Specifi-
cally, guess effects (addi, deli) for δ(ti) and then check that
for all 1 ≤ i ≤ n, τ(ti, si) = > where s1 is the initial state
of the problem and si = (si−1 \ deli) ∪ addi for 1 < i ≤ n.

Hardness: we reduce from the NP-complete SAT problem
(Cook 1971). Let X = {x1, . . . , xn} be a set of boolean
variables, and X̃ = {¬x | x ∈ X} be negations. Let C =
{c1, . . . , cm} be a set of clauses over our variables, and say
that xi ∈ cj if setting xi to true sets cj to be true. Similarly
say that ¬xi ∈ cj if setting xi to false sets cj to be true.

Then we can define a domain D = 〈F , NP , ∅, δ, ∅〉 with
F = C, NP = {e1, . . . en, k} and δ defined by

ei 7→ 〈∅, {({cj ∈ C | xi ∈ cj} , ∅),
({cj ∈ C | ¬xi ∈ cj} , ∅)}〉,

k 7→ 〈C, ∅, ∅〉 .
Define a planning problem P = 〈D, sI , tnI〉with sI = ∅,

tnI = 〈T,≺, α〉, T = {t1, . . . , tn, tε}, the total ordering ≺
defined by t1 ≺ . . . ≺ tn ≺ tε and α by ti 7→ ei and tε 7→ k.

To justify how satisfiability of the set of clauses in C cor-
responds with existence of a weak solution, suppose that we
have boolean assignments for each xi such that C is satisfied.
Then choose the first outcome of each ei if xi is true, and
choose the second otherwise. Since the choice of xi satisfies
C, we would have progressed to a state with all elements of
C after action en so we can apply k. Conversely, if no assign-
ment of variables satisfies C, then no selection of outcomes

of the actions ei will progress the initial state to C and hence
we cannot execute k.

The above membership proof technique can also be used
for partially ordered primitive problems with an additional
step. Now we guess a linearisation preserving the partial or-
der and then verify executability of such linearisation.
Corollary 4.2. Let P be a primitive FOND HTN problem.
Deciding whether P has a weak solution is in NP.

Now we will provide the compilation technique for all
classes but regular problems, with which we will deal with
later individually. The idea of the compilation is that we re-
place each nondeterministic primitive task with a compound
task with a decomposition into a deterministic task for each
effect in the original one. This domain transformation con-
cept where tasks in the original planning domains are re-
placed with compound tasks is similarly used for HTN plan
and goal recognition (Höller et al. 2018) and HTN plan re-
pair (Höller et al. 2020).
Lemma 4.3. Let P be a FOND HTN problem. P can be
compiled in P time into the deterministic version of the prob-
lem, such that P has a weak solution iff its compilation has
a solution. Furthermore, the compilation preserves acyclic
and tail-recursive problem subclasses.

Proof. We will replace each primitive task ti ∈ NP with
a compound task ci and define deterministic primitive tasks
t′i,j and methods mi,j for 1 ≤ j ≤ n with n the number of
effects of ai = δ(ti). Extend δ to include maps

t′i,j 7→ (pre(ai), addj(ai), delj(ai)).

Then define mi,j = (ci, tni,j) where tni,j is the task net-
work with one task t′i,j . The compilation is polynomial since
we introduce linearly many new tasks and methods for each
task in the original problem. Tail-recursive problems are pre-
served as the implicitly modified methods still obey the tail-
recursive restriction and similarly for acyclic problems.

We now show correspondence between solutions of the
original and compiled problem. Suppose a weak solution
exists for the former. Then in the compiled problem, we
can choose decompositions corresponding to the task ef-
fects which contribute to the weak solution for the com-
pound tasks replacing the nondeterministic tasks to get an
executable linearisation. Conversely, if a linearisation exists
for the compiled deterministic problem, we can choose the
task effects corresponding to methods of the compound ci’s
to get a weak solution for the original FOND problem.

Given that the compilation is in polynomial time, we get
the same membership results from the deterministic versions
of the corresponding problem subclasses.
Theorem 4.4. LetP be a general, acyclic or tail-rec. FOND
HTN problem. The complexity of deciding whether P has a
weak solution is equivalent to its FOD counterpart.

The reason why we cannot directly adapt Lem. 4.3 for
regular problems is because some decompositions are mod-
ified to be no longer regular. However, we can still use the
exact same progression search proof for regular problems



(Erol, Hendler, and Nau 1996) which looks at the size of
the largest task network in the model under progression in
our determinised problem. This is because the space bound
of the algorithm does not change for our compilation as the
newly added compound tasks get replaced by a single prim-
itive and hence do not increase the size of any task network.

Corollary 4.5. Let P be a regular FOND HTN problem.
The complexity of deciding whether P has a weak solution
is equivalent to its FOD counterpart.

Strong Linearisation-Dependent Problems
Strong LD solutions behave similarly to conformant plans
for planning under uncertainty (Goldman and Boddy 1996)
as both require finding a linearisation that is executable re-
gardless of action effects. We can also compile strong LD
problems to their FOD counterparts in polynomial time us-
ing a similar method for compiling nondeterministic con-
formant problems into classical problems (Albore, Palacios,
and Geffner 2010; Palacios and Geffner 2009). However in
contrast to weak solutions, the compilation also works for
all FOND HTN problem subclasses.

Lemma 4.6. Let P be a FOND HTN problem. P can be
compiled in P time into the deterministic version of the prob-
lem, such that P has a strong LD solution iff its compilation
has a solution. Furthermore, the compilation preserves all
problem subclasses.

Proof. First we modify the problem syntactically where for
all a ∈ δ(Np), we set deli(a) = deli(a)\addi(a). This is be-
cause by definition facts in the intersection addi(a)∩deli(a)
are always added when a is executed so doing this changes
nothing semantically. However, the below compilation will
not preserve the correspondence of solutions if we do not
compile this away. Then determinise the problem by col-
lapsing task effects and replacing all a ∈ δ(Np) with

a′ = (pre(a),
⋂

1≤j≤n addj(a),
⋃

1≤j≤n delj(a)),

where ni is the number of effects of ai. This takes polyno-
mial time in the number of action effects to compile.

Solving the determinised problem is equivalent to solving
the original problem as both require finding an executable
linearisation. This is because we can solve a FOND problem
by finding a candidate strong LD linearisation solution and
verifying executability by performing the above determin-
isation but this commutes with the action of determinising
the problem first then finding an executable linearisation.

The problem of verifying executability of a determinised
linearisation is the same as of the FOND one since all the
effects of a are weaker than those of a′. Specifically, the add
of each a′ are subsets of those of a while on the other hand
the deletes of a′ are supersets of a, so executability of each
a′ guarantees executability of a for all possible effects.

Conversely, a strong LD solution can be compiled to an
equivalent deterministic one which can be seen by using an
inductive argument. Assume that a length k > 0 prefix of
a strong LD solution δ(t1), . . . , δ(tn) can be determinised.
Then applying the first k actions advances the initial state to
some state s. By definition of a strong LD solution, for all

s′ ∈ γ(tk+1, s), we have τ(tk+2, s
′) = >. This is equiva-

lent to saying that τ(tk+2,
⋂
s′∈γ(tk+1,s)

s′) = > and hence
δ(tk+1) can be determinised in the above manner. The argu-
ment for the base case k = 0 is the same where s = sI .

Thus, we have a direct correspondence between FOD and
FOND solutions since one exists iff the other does. Further-
more, problem subclasses are preserved as no changes are
made to compound tasks and methods.

Again, since the above compilation is in polynomial time,
we get the same membership results from the deterministic
versions of the problems. Recall Prop. 2.15 to get the same
result for totally ordered strong OD problems.
Theorem 4.7. Let P be a FOND HTN problem. The com-
plexity of deciding whether P has a strong LD solution is
equivalent to its FOD counterpart.

Corollary 4.8. LetP be a totally ordered FOND HTN prob-
lem. The complexity of deciding whether P has a strong OD
solution is equivalent to its FOD counterpart.

5 Complexity Results for Strong
Outcome-Dependent Problems

Unlike for the other two solution criteria, there is no easy
method for compiling a partially ordered FOND HTN prob-
lem with strong OD solutions to a deterministic HTN prob-
lem. This is reinforced by our first significant result in this
section which states that partially ordered OD primitive
problems are PSPACE-complete, exactly one step harder
than the deterministic problem which is NP-complete. The
increase of hardness should be expected given the extra flex-
ibility and strength of strong OD solutions in comparison to
strong LD solutions or conformant plans. However, this does
not completely rule out the existence of a compilation given
that it is yet an unknown result whether NP = PSPACE.

The result that the plan existence problem for strong prim-
itive OD solutions is PSPACE-complete although a pol-
icy is possibly exponential in size. This mirrors the re-
sult from non-hierarchical propositional planning where it
is PSPACE-complete to determine existence of a plan (By-
lander 1994) but a plan can still be exponential in length.
We use two tools for the proof: alternating Turing machines
(ATM), an extension of Turing machines with additional
existential and universal states, and reduction from a two
player game with a bounded number of turns. The intuition
for the former is that the alternation feature of ATMs deal
with nondeterminism naturally (Rintanen 2004). The intu-
ition for the latter is that nondeterminism is associated to an
enemy in adversarial game playing and that the fixed num-
ber of actions in primitive problems fit the criteria of having
a bounded number of turns in the game we reduce from.
Theorem 5.1. LetP be a partially ordered, primitive FOND
HTN problem. Deciding whetherP has a strong OD solution
is PSPACE-complete.

Proof. Membership: we show that the problem is in AP,
problems decidable in polynomial time by an ATM, and use
that AP = PSPACE (Chandra and Stockmeyer 1976; Kozen
1976) to show PSPACE-membership. Let tn have n tasks.



The ATM begins by branching existentially to find a can-
didate first task ti1 , then universally for all effects effi1 of
said task. Then encode in classical TM language and solve
the problem of whether ti1 is executable in sI and store the
state s1 progressed by the effect effi1 applied on sI . Then
branch existentially again to find a second task ti2 and uni-
versally for effects effi2 of said task and encode the prob-
lem of whether ti2 is executable in s1, check that ti2 6≺ ti1 ,
ti2 6= ti1 and store the state s2 progressed by effi2 on s1.
Repeat until the n-th and last step where we branch exis-
tentially to find a tin then universally for effects effin and
encode and solve whether tin is executable in the state sn−1
progressed under the corresponding search and tin is unique
from and not behind any of ti1 , . . . , tin−1 . Each of the n
steps requires polynomial time to encode to an ATM and
execute, so the problem is in AP = PSPACE.

The acceptance of the ATM corresponds with the exis-
tence of a policy, as this ATM algorithm asks whether for
all task effects of a chosen task there exists a next task de-
pendent on the task effect which is executable from the state
progressed from such effect and so on until all tasks are ex-
ecuted in a sequence preserving the partial ordering.

Hardness: we reduce from an (m,n, k)-game which is
PSPACE-complete2 for k ≥ 4 (Hsieh and Tsai 2007; Reisch
1980). In an (m,n, k)-game, two players (P1 and P2) take
turns marking empty squares on am by n grid with symbols
like X and O, one for each player, and whoever marks k in a
row, column or diagonal wins. The problem we reduce from
is whether the first player P1 has a winning strategy against
the second player P2.

We begin modelling an (m,n, k)-game by defining mn
tasks mapping bijectively to mn nondeterministic turni ac-
tions each representing a P1 move and all possible P2 coun-
termoves in the action effects. We then define several win
and not lose actions to help determine whether an instance
of a game is won by P1. Moreover, we define several illegal
actions to deal with nondeterministic effects of turni that
might correspond to P2 playing an illegal move. Finally, we
introduce a clear action which gets triggered when a win
condition for P1 is met or an illegal is played by P2 and is
used to complete a strong OD solution by making all other
tasks executable. The execution of a strong OD policy can
be divided into three main phases:

• Phase 1: playing an instance of an (m,n, k)-game,
• Phase 2: verifying that P1 has won a game,
• Phase 3: executing every remaining task as required in a

strong OD solution.

Now we begin to formalise and justify our argument.
First, associate each i ∈ {1, . . . ,mn} with a unique square
in an m by n board. Next, let L denote the set of all pos-
sible size k sets of integers between 1 and mn inclusive
corresponding to length k rows, columns or diagonals (k-
line). A loose upper bound for the cardinality of L is given

2Hsieh and Tsai proved a more general result by showing
that (m,n, k, p, q)-games are PSPACE-complete for k − p ≥
max {3, p}. An (m,n, k)-game is a special case where p = q = 1.

by |L| ≤ 3mn since there are at most mn of each rows,
columns and diagonals on an m by n board.

Then define an HTN domain D = 〈F , NP , ∅, δ, ∅〉 with
the facts given by

F = {xi,¬xi, oi,¬oi | 1 ≤ i ≤ mn} ∪ L ∪ {R,C} .

The facts xi indicate that square i on the board is occupied
by a P1 symbol and the ¬xi indicate that it is not occupied
by a P1 symbol. In Phase 1 of plan execution which models
a game, both xi and ¬xi will never be set simultaneously.
However, after a win condition is met, we no longer follow
this rule. The same can be said similarly for oi and ¬oi rep-
resenting existence of P2 symbols on the board.

The facts in L as described earlier represent k-lines and
is used with not lose actions which will be defined below
to check whether P2 has not won a game and P1 has not
lost. Note that although elements of L are defined as sets,
each element is only one fact. The factR, denoting a running
game, is modified by fin turn actions which again will be
defined later to model a winning move for P1. The fact C
is used in conjunction with a clear task, also to be defined
later, which allows us to enter Phase 3 of a strong OD policy.

We define task names and mapping δ of such names to
primitive actions as follows, noting that the turni are the
only nondeterministic tasks

turni 7→ ({¬xi} ,
{({xi, oj} , {¬xi,¬oj}) | 1 ≤ j ≤ mn})

fin turni 7→ ({¬xi,¬oi, R} , {xi} , {R})
winλ 7→ ({xi | i ∈ λ} , {xj ,¬xj | 1 ≤ j ≤ mn} , ∅)

not losei 7→ ({¬oi} , {λ | i ∈ λ, λ ∈ L} , ∅)
not lose0 7→ (L, {C} , ∅)

illegali 7→ ({xi, oi} , {C} , ∅)
clear 7→ ({C} ,F , ∅)

for 1 ≤ i ≤ mn and one winλ for each λ ∈ L. We will
need to finish constructing the primitive FOND HTN prob-
lem with the task id symbol mapping and partial ordering
of the initial task network before being able to explain the
purpose of such tasks.

We define the problem P = 〈D, sI , tnI〉 with sI =
{¬xi,¬oi | 1 ≤ i ≤ mn}∪{R} corresponding to an empty
board. Let tnI = 〈T,≺, α〉 be a primitive task network with
α mapping task id symbols in T bijectively to each of the
primitive task names defined above except clear, where in-
stead we define N task id symbols mapping to clear by α,
one copy for each of the other actions. Specifically, N =
|L| + 4mn + 1 ≤ 7mn + 1 where there are |L| number of
winλ and mn of each turni, fin turni, not losei and illegali.
Finally, define a partial ordering with winλ ≺ not losei for
all possible (λ, i) tuples with λ ∈ L and 1 ≤ i ≤ mn.

The reduction is polynomial as there are at most 7mn+2
facts and 2(7mn+1) task symbols mapping surjectively into
the set of task names.

Phase 1 The turni task corresponds in the world of an
(m,n, k)-game to a P1 move followed by a P2 countermove.
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Figure 4: An instance of a Tic-Tac-Toe game. The top row
illustrates the usual depiction of such a game and the bottom
two rows show the state variables of corresponding states
and executed tasks from the reduction to FOND HTN plan-
ning. Facts λ are not shown and ∨xi indicates both xi and
¬xi is set and similarly for ∨oi with oi and ¬oi.

Specifically, the effects associated with adding xi and delet-
ing ¬xi indicate P1 placing a symbol at square i if possi-
ble, and the nondeterministic effects associated with adding
oi and deleting ¬oi indicate P2 placing a symbol at j. The
fin turni also corresponds with P1 playing a move, but now
with no effect for a P2 move. This is defined to be a ‘winning
move’ for P1 which should only be played once in Phase 1
to avoid a simultaneous win for P2 from turni effects. It is
also defined to be only placed once in a game with the in-
troduction of the R fact such that P1 cannot play k fin turni
actions in a row to win at start of the game.

Phase 2 The winλ task sets off Phase 2 once P1 wins a
game by playing a k-line. Once one winλ can be executed
the remaining winλ can be as well. Then the not losei tasks
can be executed and preserve the partial ordering to turn on
facts in L. Setting all the facts in L allows executability of
not lose0 which determines that P2 has not won as well.

Phase 3 Then we enter Phase 3 where we can execute all
duplicates of clear and hence all remaining tasks yet to be
executed as clear adds all facts in the model to a state. The
partial ordering is defined in order to prevent all the not losei
tasks from being executed in sI and flag a false win.

Fig. 4 illustrates an example execution sequence corre-
sponding to a P1 win in an (3, 3, 3)-game, or Tic-Tac-Toe.
We begin with Phase 1 where the states sI , s2, s3, s4 cor-
respond to the above game states of the Tic-Tac-Toe in-
stance. The tasks and effects that progress sI to s4 in or-

der are turn5 : eff6, turn7 : eff1 and fin turn3. Then we
enter Phase 2 where winλ progresses s4 to sW represent-
ing a win state with precondition {x3, x5, x7}. The state sW
is then progressed to sC representing a clear state by first
executing the remaining win tasks followed by not lose2,
not lose4, not lose5, not lose9 and then not lose0. Equiva-
lently, the planner can also execute not lose3, not lose5 and
not lose7 before not lose0 instead. Finally, we enter Phase
3 where the remaining tasks are executed in an alternating
fashion with a duplicate of clear in between each of the other
tasks to progress sC to the final state sF .

Note that in this reduction it is possible for P2 to play
an illegal move by placing a symbol on top of an already
existing symbol by nondeterministic effects of turni. If P2
plays a symbol on top of a P1 symbol, then an illegali task
becomes executable which similarly to above allows exe-
cutability of all duplicates of clear and hence every other
task. This is intended since a strong OD solution corre-
sponds to a winning strategy for P1 and we can disregard
illegal moves since a winning strategy assumes no illegal
moves. Otherwise if P2 plays a symbol on top of another P2
symbol, then although this move is illegal, this benefits P1
and in no way benefits P2 since this is equivalent to P2 losing
a turn. Thus, this case is also not an issue in the reduction.

To see the correspondence between the solutions of the
original and the reduced problem, first assume that we have
a winning strategy for an (m,n, k)-game. Then a policy
would execute turni corresponding to P1 moves in the win-
ning strategy in response to legal P2 moves represented by
nondeterministic effects. In the case where a nondeterminis-
tic effect corresponding to an illegal move is set, execute the
illegali task which sets C and lets us enter Phase 3. Hence,
a strong OD solution exists. Conversely, if a strong OD so-
lution exists, we can similarly construct a winning strategy
for P1 and ignore the branches where illegal P2 moves oc-
cur. By our construction, there cannot exist a policy which
is executable but does not correspond to a win by definition
that all tasks must be executed.

We now study the remaining problem classes: acyclic,
regular and tail-recursive. For acyclic problems where there
is no recursion in task decomposition, we can adapt the
membership proof of the deterministic version of the prob-
lem in Cor. 3.2 by Alford, Bercher, and Aha (2015a) which
calculates an upper bound for the size of a task network un-
der decomposition.

Theorem 5.2. Let P be an acyclic FOND HTN prob-
lem. Deciding whether P has a strong OD solution is in
EXPSPACE.

Proof. We provide a nondeterministic decision procedure
which consists of two steps as follows:

1. Nondeterministically guess and apply up to kh decom-
positions in order where k is the size of the largest task
network in the model and h = |M|.

2. Verify whether the resulting primitive task network tn has
a policy which is a strong OD solution (Thm. 5.1).



The bound for the number of decompositions results from
performing the operation of decomposing all compound
tasks in the current task network at most h times. This comes
from the acyclic assumption where each method replaces the
decomposed task with tasks of strictly lower stratum and the
branching factor k comes from each application of this oper-
ation. Thus after h decompositions the expanded initial task
network must be primitive. Step 1 takes exponential time and
step 2 polynomial space with respect to kh such that the de-
cision procedure requires exponential space and the problem
is in NEXPSPACE = EXPSPACE (Savitch 1970).

Trying to directly adapt the algorithm for regular FOD
problems (Erol, Hendler, and Nau 1996) to FOND problems
fails. This is because the progression search algorithm used
relies on advancing an initial state to determine a solution by
components corresponding to task decomposition, whereas
in nondeterminism we may end up in several advanced states
in a search node. To remedy this problem, we use extra space
to store all possible advanced states after progression.

Theorem 5.3. Let P be a regular FOND HTN prob-
lem. Deciding whether P has a strong OD solution is in
EXPSPACE.

Proof. Define Prim(tn) to return the task network tn re-
stricted to all its primitive tasks in the obvious way. Also de-
fineProg(tnP , π, s) to return the set of states corresponding
to the leaf nodes of the execution structure of π for tnP at s
by a depth-first search. Then the algorithm is as follows.

1. Let tn = tnI , SA = {sI} and SB = ∅.
2. Let tnP = Prim(tn) and initialise d = >. For all s ∈ A:

Nondeterministically guess a policy π for tnP .
Verify that π is a solution for tnP (Prop. 2.16) and if
so, let SB = SB ∪ Prog(tnP , π, s). Else, set d = ⊥.

3. If d = ⊥ this nondeterministic branch is not a witness.
4. If tn has no compound task, terminate with success. Oth-

erwise let SA = SB , SB = ∅ and tn = tnc, with tnc the
task network tn restricted to the only compound task c.

5. Guess a method and apply it to tn. Then go to step 2.

The task network tn is bounded by the size of the largest
network in the model and guessing a policy takes exponen-
tial space relative to tn. Similarly Prog takes exponential
time by a polynomial time depth-first search in the expo-
nential size policy. Moreover, the sets SA and SB are each
bounded by the number of states which is exponential in the
number of facts such that the problem is in EXPSPACE.

For correctness, observe that regularity ensures that af-
ter applying some number of methods to achieve a prim-
itive task network, we can create policies for disjoint sets
of primitive tasks corresponding to each compound regular
method component as illustrated in Fig. 5. This arises from
an equivalence relation on such sets induced by compound
tasks being last. Hence a proof of a witness can be done in
finite space by verifying that each policy component con-
tributes to a solution. SA stores ‘initial states’ for policies
and SB all possible progressed states of a policy component

tn
tnPSA

s1, . . . , sn

SB

s′1, . . . , s
′
m

Figure 5: Visualisation of the data structures used for the
decision procedure of plan existence for regular strong OD
problems. Black nodes represent primitive tasks, the white
node a last compound task and arrows partial order.

at an initial state. Step 4 determines for each loop of the al-
gorithm whether there exists a policy component that is a
solution for Prim(tn) for all possible initial states such that
it contributes to a solution for the initial problem.

However, trying progression search for strong OD tail-
recursive problems fails because of the existence of possibly
more than one compound task in a network. Then primi-
tive tasks cannot be progressed and forgotten about without
requiring unbounded space to deal with nondeterministic ef-
fects so it is not obvious which complexity class such a prob-
lem lies in or if the problem is even decidable at all.

6 Conclusion
We have proposed a novel formalism for extending stan-
dard HTN planning over nondeterministic domains with so-
lution criteria spanning two dimensions. The first dimen-
sion describes the structure of a solution: it is either a con-
formant plan (linearisation-dependent) or policy (outcome-
dependent). The second dimension describes how likely a
solution executes successfully: weak and strong. The solu-
tion criteria are both canonical in the context of standard
HTN planning and non-hierarchical planning under uncer-
tainty. Furthermore, we have found methods for compiling
problems with certain solution criteria into their determinis-
tic counterparts and other relations between problems to get
many tight complexity bounds with no increase in hardness.

However, hardness does increase for the strongest and
most flexible solution criteria involving policies as can be
seen in the base case of FOND HTN planning where hierar-
chies are eliminated. We have shown that nondeterministic,
partially ordered primitive problems are PSPACE-complete,
exactly one step harder than the NP-completeness of the
deterministic problem. We also have loose upper bounds
for the remaining problem subclasses whose tight bounds
are left for future study alongside complexity analysis for
non-primitive problems with dynamic method decomposi-
tion and TIHTN planning over nondeterministic domains.
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