

HTN planning in a nutshell

- Aim of classical planning: reach a goal state with a sequence of actions.
- Aim of HTN planning: execute a given set of tasks with task decomposition.
- tasks either compound or primitive
- compound tasks can be decomposed into another set of tasks
- primitive tasks = actions

Why HTN planning?

- Expressive complexity ranges from tractable to undecidable
- Nice compilation from classical planning
- Easy to encode domain dependent knowledge
- Levels of abstraction helpful for communicating with users

Adding uncertainty

- Classical planning: actions may have several effects
- HTN planning: actions may have several effects
- ▶ same!

Fully Observable Nondeterministic HTN Planning – Formalisation and Complexity Results

Dillon Chen, Pascal Bercher

The Australian National University {dillon.chen, pascal.bercher} @anu.edu.au

Hiera

primi

no re (acyc

regul

tailrecui arbitr recur

Defining solutions

- Nondeterministic planning: sequence or policy of actions Nondeterministic HTN planning: decompose away all compound tasks followed by sequence or policy of actions
- alternatively, integrate decomposition into policy

executing a policy π :

- • $s \leftarrow s_I$
- while $\pi(s)$ exists:
- -execute $\pi(s)$
- $-s \leftarrow \text{senseState}()$
- if $s = s_G$: return success

Complexity results

• (almost all) weak FOND HTN problems can be compiled into deterministic problems • totally ordered FOND HTN problems can be compiled into deterministic problems partially ordered FOND HTN problems made at least one class harder

	Order	FOD	FOND					
archy			Weak		Strong			
					linearisation-depen	dent	outcome-depende	ent
tive	total partial	P^* NP^{lpha}	NP NP	[4.1] [4.2]	NP	P* [4.7]	PSPACE	[4.8] [5.1]
cursion lic)	total partial	$\begin{array}{c} PSPACE^{\beta}\\ NEXPTIME^{\beta} \end{array}$	PSPACE NEXPTIME	[4.4] [4.4]	NEXPTIME	PSPACE [4.7]	EXPSPACE*	[4.8] [5.2]
ar	total partial	$PSPACE^{lpha}$ $PSPACE^{lpha}$	PSPACE PSPACE	[4.5] [4.5]	PSPACE	PSPACE [4.7]	EXPSPACE*	[4.8] [5.3]
sion	total partial	$PSPACE^{\beta}$ EXPSPACE $^{\alpha,\beta}$	PSPACE EXPSPACE	[4.4] [4.4]	EXPSPACE	PSPACE [4.7]	semidecidable*	[4.8] [3.1]
ary sion	total partial	EXPTIME ^{β} semi- & undecidable ^{α, γ}	EXPTIME semi- & undecidable	[4.4] [3.1]	semi- & undecidable	EXPTIM [3.1] sen	E ni- & undecidable	[4.8] 2 [3.1]